The human intestinal tract – a hotbed of resistance gene transfer? Part I

2007 ◽  
Vol 29 (3) ◽  
pp. 17-21 ◽  
Author(s):  
Abigail A. Salyers ◽  
Kyung Moon ◽  
David Schlesinger
2007 ◽  
Vol 29 (4) ◽  
pp. 25-30 ◽  
Author(s):  
Abigail A. Salyers ◽  
Kyung Moon ◽  
David Schlessinger

2011 ◽  
Vol 56 (1) ◽  
pp. 189-196 ◽  
Author(s):  
Alexandra Dheilly ◽  
Laëtitia Le Devendec ◽  
Gwenaëlle Mourand ◽  
Axelle Bouder ◽  
Eric Jouy ◽  
...  

ABSTRACTAn experiment was conducted in animal facilities to compare the impacts of four avian colibacillosis treatments—oxytetracycline (OTC), trimethoprim-sulfadimethoxine (SXT), amoxicillin (AMX), or enrofloxacin (ENR)—on the susceptibility ofEscherichia coliin broiler intestinal tracts. Birds were first orally inoculated with rifampin-resistantE. colistrains bearing plasmid genes conferring resistance to fluoroquinolones (qnr), cephalosporins (blaCTX-MorblaFOX), trimethoprim-sulfonamides, aminoglycosides, or tetracyclines. Feces samples were collected before, during, and after antimicrobial treatments. The susceptibilities ofE. colistrains were studied, and resistance gene transfer was analyzed. An increase in the tetracycline-resistantE. colipopulation was observed only in OTC-treated birds, whereas multiresistantE. coliwas detected in the dominantE. colipopulations of SXT-, AMX-, or ENR-treated birds. Most multiresistantE. colistrains were susceptible to rifampin and exhibited various pulsed-field gel electrophoresis profiles, suggesting the transfer of one of the multiresistance plasmids from the inoculated strains to otherE. colistrains in the intestinal tract. In conclusion, this study clearly illustrates how, inE. coli, “old” antimicrobials may coselect antimicrobial resistance to recent and critical molecules.


2004 ◽  
Vol 33 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Christian Zimmermann ◽  
Heike Gutmann ◽  
Petr Hruz ◽  
Jean-Pierre Gutzwiller ◽  
Christoph Beglinger ◽  
...  

Blood ◽  
1992 ◽  
Vol 80 (6) ◽  
pp. 1418-1422 ◽  
Author(s):  
M Bregni ◽  
M Magni ◽  
S Siena ◽  
M Di Nicola ◽  
G Bonadonna ◽  
...  

Abstract Hematopoietic progenitor cells circulate in the peripheral blood (PB) of cancer patients during the recovery phase that follows treatment with high-dose cyclophosphamide followed by hematopoietic growth factor infusion. We report that when PB progenitors were exposed in vitro to filtered supernatant from cell line PA317-N2, producing amphotropic helper-free N2 vector at conventional titers, successful retroviral- mediated transfer of neomycin resistance gene was documented by polymerase chain reaction in 93% of day 14 myelomonocytic colonies. Under the same conditions, gene transfer was achieved in 22% of steady- state bone marrow-derived myelomonocytic colonies. Neo-resistance gene transfer was documented also in a CD34+/cyclophosphamide-resistant precursor to granulocyte-macrophage colonies, an undifferentiated progenitor close to the hematopoietic stem cell. Neither cocultivation with vector-producing cells nor high vector titer were stringent requisites for efficient gene transfer. The large-scale availability of PB hematopoietic progenitors in cancer patients, together with the high gene transfer rate achieved under safe and clinically feasible conditions, support an optimal approach for gene transfer procedures into the human hematopoietic system.


Sign in / Sign up

Export Citation Format

Share Document