P007 Comparing the efficacy of transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS) on the auditory temporal resolution in patients with dyslexia

2017 ◽  
Vol 128 (3) ◽  
pp. e14
Author(s):  
K. Rufener ◽  
H.-J. Heinze ◽  
T. Zaehle
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivan Pozdniakov ◽  
Alicia Nunez Vorobiova ◽  
Giulia Galli ◽  
Simone Rossi ◽  
Matteo Feurra

AbstractTranscranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows interaction with endogenous cortical oscillatory rhythms by means of external sinusoidal potentials. The physiological mechanisms underlying tACS effects are still under debate. Whereas online (e.g., ongoing) tACS over the motor cortex induces robust state-, phase- and frequency-dependent effects on cortical excitability, the offline effects (i.e. after-effects) of tACS are less clear. Here, we explored online and offline effects of tACS in two single-blind, sham-controlled experiments. In both experiments we used neuronavigated transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) as a probe to index changes of cortical excitability and delivered M1 tACS at 10 Hz (alpha), 20 Hz (beta) and sham (30 s of low-frequency transcranial random noise stimulation; tRNS). Corticospinal excitability was measured by single pulse TMS-induced motor evoked potentials (MEPs). tACS was delivered online in Experiment 1 and offline in Experiment 2. In Experiment 1, the increase of MEPs size was maximal with the 20 Hz stimulation, however in Experiment 2 neither the 10 Hz nor the 20 Hz stimulation induced tACS offline effects. These findings support the idea that tACS affects cortical excitability only during online application, at least when delivered on the scalp overlying M1, thereby contributing to the development of effective protocols that can be applied to clinical populations.


2018 ◽  
Vol 11 (1) ◽  
pp. 118-124 ◽  
Author(s):  
Alina Baltus ◽  
Sven Wagner ◽  
Carsten Hermann Wolters ◽  
Christoph Siegfried Herrmann

2021 ◽  
Author(s):  
Nikolas Haller ◽  
Alkomiet Hasan ◽  
Frank Padberg ◽  
Wolfgang Strube ◽  
Leandro da Costa Lane Valiengo ◽  
...  

ZusammenfassungÜber die letzten Jahre entwickelten sich Neuromodulationsverfahren zu einer dritten Säule neben Pharmakotherapie und Psychotherapie in der Behandlung psychischer Erkrankungen. Besonders in der Behandlung von Menschen mit einer Schizophrenie könnten Hirnstimulationsverfahren eine Alternative oder Ergänzung zu den etablierten Therapiestrategien darstellen. Die meist vorhandenen Positivsymptome können zumeist mit Antipsychotika adäquat behandelt werden. Gerade bei Patienten mit Schizophrenie besitzen jedoch Negativsymptome einen überdauernden Krankheitswert und beeinflussen den Verlauf durch globale Antriebsverarmung und beeinträchtigte Kognition im alltäglichen Leben negativ. Dieser Übersichtsartikel stellt eine Zusammenfassung über die verschiedenen nichtinvasiven Hirnstimulationsverfahren transkranielle Gleichstromstimulation (transcranial direct current stimulation, tDCS), Wechselstromstimulation (transcranial alternating current stimulation, tACS) sowie Rauschstromstimulation (transcranial random noise stimulation, tRNS) zur Behandlung der Negativsymptomatik bei Schizophrenie dar. Die neuen transkraniellen Hirnstimulationsverfahren könnten dabei helfen, gestörte neuronale Vernetzungen wieder herzustellen und die Konnektivität vor allem der dorsolateralen präfrontalen Anteile des Kortex zu verbessern. Einige Studien weisen auf eine Verbesserung der Negativsymptome durch Behandlung mit tDCS, tACS bzw. tRNS hin und könnten so neue Therapiemöglichkeiten in der Behandlung der Schizophrenie darstellen.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Andrea Antal ◽  
Christoph S. Herrmann

Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS.Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions.Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations.Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.


2017 ◽  
Author(s):  
Alina Baltus ◽  
Christoph Siegfried Herrmann

AbstractRecent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, nine participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition) while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance.


2018 ◽  
Vol 29 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Thusharika D. Dissanayaka ◽  
Maryam Zoghi ◽  
Michael Farrell ◽  
Gary F. Egan ◽  
Shapour Jaberzadeh

AbstractSham stimulation is used in randomized controlled trials (RCTs) to assess the efficacy of active stimulation and placebo effects. It should mimic the characteristics of active stimulation to achieve blinding integrity. The present study was a systematic review and meta-analysis of the published literature to identify the effects of sham transcranial electrical stimulation (tES) – including anodal and cathodal transcranial direct current stimulation (a-tDCS, c-tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS) and transcranial pulsed current stimulation (tPCS) – on corticospinal excitability (CSE), compared to baseline in healthy individuals. Electronic databases – PubMed, CINAHL, Scopus, Science Direct and MEDLINE (Ovid) – were searched for RCTs of tES from 1990 to March 2017. Thirty RCTs were identified. Using a random-effects model, meta-analysis of a-tDCS, c-tDCS, tACS, tRNS and tPCS studies showed statistically non-significant pre-post effects of sham interventions on CSE. This review found evidence for statically non-significant effects of sham tES on CSE.


2020 ◽  
Author(s):  
Samuel James Westwood

Non-invasive brain stimulation (NIBS) is a useful tool for assisting causal inferences in cortical structure–function relationships and for developing treatment alternatives in neuropsychiatric disorders. Transcranial electrical stimulation (TES) techniques, namely transcranial direct stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS), have grown in popularity in recent years because they are well tolerated, safe, and less costly compared to other forms of NIBS such as transcranial magnetic stimulation (TMS). The rigour and reproducibility of TES studies and their findings is therefore of key importance. However, in recent years, uncertainty has grown regarding the effectiveness of TES and the quality of its evidence base. Current recommended steps to improve the rigour and reproducibility of TES research have mainly focused on reducing variation and ambiguity in reported findings. To effectively deal with reported issues, Open Science practices provide a possible answer. The goal of this article is to give an overview of Open Science practices relevant to TES research (i.e., open materials/data, preregistration, registered reports, collaboration) and guidance in how to overcome challenges one may face in their implementation (e.g., data anonymity, costs of sharing materials/data, inappropriate incentives). The ultimate goal of this article is to instigate more engagement from TES researchers in how Open Science practices can be incorporated into standard research practice.


Sign in / Sign up

Export Citation Format

Share Document