P-EP013. Superior migration propensity of dental pulp stem cells in in vitro and in vivo models of excitotoxic neurodegeneration

2021 ◽  
Vol 132 (8) ◽  
pp. e82-e83
Author(s):  
Sivapriya Senthilkumar ◽  
Chaitra Venugopal ◽  
K. Shobha ◽  
Bindu M. Kutty ◽  
Anandh Dhanushkodi
2019 ◽  
Vol 52 (6) ◽  
Author(s):  
Alessio Zordani ◽  
Alessandra Pisciotta ◽  
Laura Bertoni ◽  
Giulia Bertani ◽  
Antonio Vallarola ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Liang Ma ◽  
Ming-wei Li ◽  
Yu Bai ◽  
Hui-hui Guo ◽  
Sheng-chao Wang ◽  
...  

Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO) (Molday ION Rhodamine-B™, MIRB) on biological properties of human dental pulp stem cells (hDPSCs) and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI). Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106cells labeled with various concentrations of MIRB (12.5–100 μg/mL) could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy.


2009 ◽  
Vol 35 (3) ◽  
pp. 367-372 ◽  
Author(s):  
Yosuke Okamoto ◽  
Wataru Sonoyama ◽  
Mitsuaki Ono ◽  
Kentaro Akiyama ◽  
Takuo Fujisawa ◽  
...  

2013 ◽  
Vol 22 (10) ◽  
pp. 1813-1829 ◽  
Author(s):  
T. Struys ◽  
A. Ketkar-Atre ◽  
P. Gervois ◽  
C. Leten ◽  
P. Hilkens ◽  
...  

2020 ◽  
Author(s):  
Jialin Zhong ◽  
Xinran Tu ◽  
Yuanyuan Kong ◽  
Liyang Guo ◽  
Baishun Li ◽  
...  

Abstract Background: Increasing evidence has revealed that long non-coding RNAs (lncRNAs) exert critical roles in biological mineralization. As a critical process for dentin formation, odontoblastic differentiation is regulated by complex signaling networks. The present study aimed to investigate the biological role and regulatory mechanisms of lncRNA-H19 (H19) in regulating the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). Methods: We performed lncRNA microarray assay to reveal the expression patterns of lncRNAs involved in odontoblastic differentiation. H19 was identified and verified by qRT-PCR. The gain- and loss-of-function studies were performed to investigate the biological role of H19 in regulating odontoblastic differentiation of hDPSCs in vitro and in vivo. Odontoblastic differentiation was evaluated through qRT-PCR, Western blot and Alizarin Red S staining. Bioinformatics analysis identified that H19 could directly interact with miR-140-5p, which was further verified by luciferase reporter assay. After overexpression of miR-140-5p in hDPSCs, odontoblastic differentiation was determined. Moreover, the potential target genes of miR-140-5p were investigated and the biological functions of BMP-2 and FGF9 in hDPSCs were verified. Co-transfection experiments were conducted to validate miR-140-5p was involved in H19-mediated odontoblastic differentiation in hDPSCs.Results: The expression of H19 was significantly up-regulated in hDPSCs undergoing odontoblastic differentiation. Overexpression of H19 stimulated odontoblastic differentiation in vitro and in vivo, whereas down-regulation of H19 revealed the opposite effect. H19 binds directly to miR-140-5p and overexpression of miR-140-5p inhibited odontoblastic differentiation of hDPSCs. H19 acted as a miR-140-5p sponge, resulting in regulated the expression of BMP-2 and FGF9. Overexpression of H19 abrogated the inhibitory effect of miR-140-5p on odontoblastic differentiation.Conclusion: Our data revealed that H19 plays a positive regulatory role in odontoblastic differentiation of hDPSCs through miR-140-5p/BMP-2/FGF9 axis, suggesting that H19 may be a stimulatory regulator of odontogenesis.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e50542 ◽  
Author(s):  
Alessandra Pisciotta ◽  
Massimo Riccio ◽  
Gianluca Carnevale ◽  
Francesca Beretti ◽  
Lara Gibellini ◽  
...  

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Zhaocheng Zhang ◽  
Min Oh ◽  
Jun-Ichi Sasaki ◽  
Jacques E. Nör

AbstractDental pulp stem cells (DPSC) are capable of differentiating into vascular endothelial cells. Although the capacity of vascular endothelial growth factor (VEGF) to induce endothelial differentiation of stem cells is well established, mechanisms that maintain stemness and prevent vasculogenic differentiation remain unclear. Here, we tested the hypothesis that p53 signaling through p21 and Bmi-1 maintains stemness and inhibits vasculogenic differentiation. To address this hypothesis, we used primary human DPSC from permanent teeth and Stem cells from Human Exfoliated Deciduous (SHED) teeth as models of postnatal mesenchymal stem cells. DPSC seeded in biodegradable scaffolds and transplanted into immunodeficient mice generated mature human blood vessels invested with smooth muscle actin-positive mural cells. Knockdown of p53 was sufficient to induce vasculogenic differentiation of DPSC (without vasculogenic differentiation medium containing VEGF), as shown by increased expression of endothelial markers (VEGFR2, Tie-2, CD31, VE-cadherin), increased capillary sprouting in vitro; and increased DPSC-derived blood vessel density in vivo. Conversely, induction of p53 expression with small molecule inhibitors of the p53-MDM2 binding (MI-773, APG-115) was sufficient to inhibit VEGF-induced vasculogenic differentiation. Considering that p21 is a major downstream effector of p53, we knocked down p21 in DPSC and observed an increase in capillary sprouting that mimicked results observed when p53 was knocked down. Stabilization of ubiquitin activity was sufficient to induce p53 and p21 expression and reduce capillary sprouting. Interestingly, we observed an inverse and reciprocal correlation between p53/p21 and the expression of Bmi-1, a major regulator of stem cell self-renewal. Further, direct inhibition of Bmi-1 with PTC-209 resulted in blockade of capillary-like sprout formation. Collectively, these data demonstrate that p53/p21 functions through Bmi-1 to prevent the vasculogenic differentiation of DPSC.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jialin Zhong ◽  
Xinran Tu ◽  
Yuanyuan Kong ◽  
Liyang Guo ◽  
Baishun Li ◽  
...  

Abstract Background Increasing evidence has revealed that long non-coding RNAs (lncRNAs) exert critical roles in biological mineralization. As a critical process for dentin formation, odontoblastic differentiation is regulated by complex signaling networks. The present study aimed to investigate the biological role and regulatory mechanisms of lncRNA-H19 (H19) in regulating the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). Methods We performed lncRNA microarray assay to reveal the expression patterns of lncRNAs involved in odontoblastic differentiation. H19 was identified and verified as a critical factor by qRT-PCR. The gain- and loss-of-function studies were performed to investigate the biological role of H19 in regulating odontoblastic differentiation of hDPSCs in vitro and in vivo. Odontoblastic differentiation was evaluated through qRT-PCR, Western blot, and Alizarin Red S staining. Bioinformatics analysis identified that H19 could directly interact with miR-140-5p, which was further verified by luciferase reporter assay. After overexpression of miR-140-5p in hDPSCs, odontoblastic differentiation was determined. Moreover, the potential target genes of miR-140-5p were investigated and the biological functions of BMP-2 and FGF9 in hDPSCs were verified. Co-transfection experiments were conducted to validate miR-140-5p was involved in H19-mediated odontoblastic differentiation in hDPSCs. Results The expression of H19 was significantly upregulated in hDPSCs undergoing odontoblastic differentiation. Overexpression of H19 stimulated odontoblastic differentiation in vitro and in vivo, whereas downregulation of H19 revealed the opposite effect. H19 binds directly to miR-140-5p and overexpression of miR-140-5p inhibited odontoblastic differentiation of hDPSCs. H19 acted as a miR-140-5p sponge, resulting in regulated the expression of BMP-2 and FGF9. Overexpression of H19 abrogated the inhibitory effect of miR-140-5p on odontoblastic differentiation. Conclusion Our data revealed that H19 plays a positive regulatory role in odontoblastic differentiation of hDPSCs through miR-140-5p/BMP-2/FGF9 axis, suggesting that H19 may be a stimulatory regulator of odontogenesis.


Sign in / Sign up

Export Citation Format

Share Document