scholarly journals CD271+ Mesenchymal Stromal Cells in Myeloproliferative Neoplasms Philadelphia-Negative

2018 ◽  
Vol 18 ◽  
pp. S265
Author(s):  
Krzysztof Zduniak ◽  
Marta Sobas ◽  
Piotr Ziółkowski ◽  
Tomasz Wróbel
Oncotarget ◽  
2017 ◽  
Vol 8 (17) ◽  
pp. 28187-28202 ◽  
Author(s):  
Teresa L. Ramos ◽  
Luis Ignacio Sánchez-Abarca ◽  
Alba Redondo ◽  
Ángel Hernández-Hernández ◽  
Antonio M. Almeida ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1463-1463
Author(s):  
Juo-Chin Yao ◽  
Daniel C. Link

Abstract Myeloproliferative neoplasms are associated with significant alterations in the bone marrow microenvironment that contribute to disease pathogenesis. The most striking alteration is the development of myelofibrosis, which is characterized by extensive collagen deposition in the bone marrow and is associated with a poor prognosis. Recent evidence suggests that expression of key niche factors, including CXCL12 (stromal derived factor-1, SDF-1) and Kit ligand are reduced in MPNs. This is relevant, since studies by our group and others have shown that deleting these niche factors from stromal cells results in a shift in hematopoiesis from the bone marrow to spleen. Indeed, a prominent feature of MPN is the development of splenomegaly and extramedullary hematopoiesis. There is evidence implicating inflammatory mediators in the development of myelofibrosis. In particular, increased production of TGF-β produced by megakaryocytes and monocytes is found in most patients with MPNs. To assess the role of TGF-β signaling in mesenchymal stromal cells in the bone marrow in the development of myelofibrosis, we generated Osx-Cre; Tgfbr2 f/- mice, in which TGF-β signaling is abrogated in all bone marrow mesenchymal stromal cells (including Lepr + stromal cells), but not endothelial cells or hematopoietic cells. We transplanted MPL W515L transduced hematopoietic stem and progenitor cells (HSPCs) or JAK2 V617F bone marrow into these mice and quantified myelofibrosis using reticulin staining and Collagen 1 and 3 immunostaining. We previously reported that deletion of TGF-β signaling in mesenchymal stromal cells in these mice abrogated the development of myelofibrosis, and we presented evidence that this was mediated by non-canonical JNK-dependent TGF-β signaling. Here, we describe the impact of stromal TGF-β signaling on the bone marrow hematopoietic niche in MPN. MPL W515L transduced HSPCs were transplanted into Osx-Cre; Tgfbr2 f/- mice, and the impact on hematopoietic niche disruption and development of extramedullary hematopoiesis was assessed. In control recipients, transplantation of MPL W515L HSPCs resulted in marked decreases in bone marrow Cxcl12 and Kit ligand expression (Figure 1A-B). Surprisingly, a similar decrease was observed in Osx-Cre; Tgfbr2 f/- recipients. The loss of these key niche factors is predicted to impair hematopoietic niche function in the bone marrow. Consistent with this prediction, total bone marrow cellularity and HSC number were significantly reduced in both control and Osx-Cre; Tgfbr2 f/- recipients (Figure 1C-D). Finally, disruption of the bone marrow niche is often associated with extramedullary hematopoiesis. Indeed, a significant increase in spleen size and spleen HSCs and erythroid progenitors was observed in control recipients (Figure 1E-G). Again, a similar phenotype was observed in Osx-Cre; Tgfbr2 f/- recipients. Collectively, these data show that TGF-β signaling in bone marrow mesenchymal stromal cells is required for the development of myelofibrosis but not hematopoietic niche disruption in MPNs. Thus, these data show for the first time that the signals that induce a fibrogenic program in bone marrow mesenchymal stromal cells are distinct from those that suppress Cxcl12 and Kit ligand expression. Our data show that the fibrogenic program is dependent on non-canonical JNK-dependent TGF-β signaling, while the signals that regulate niche factor expression remain unknown. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3053-3053
Author(s):  
Juo-Chin Yao ◽  
Grazia Abou Ezzi ◽  
Joseph R. Krambs ◽  
Eric J. Duncavage ◽  
Daniel C. Link

Abstract The development of myelofibrosis in patients with myeloproliferative neoplasms (MPNs) is associated with a dismal prognosis. The mechanisms responsible for the progression to myelofibrosis are unclear, limiting the development of therapies to treat or prevent it. The cell of origin responsible for the increased collagen deposition is controversial, with recent studies implicating Gli1+ or leptin receptor+ mesenchymal stromal cells, monocytes, or even endothelial cells. Moreover, the signals generated by malignant hematopoietic cells in MPN that induce increased collagen expression are uncertain. There is some evidence that elevated expression of cytokines/chemokines in the bone marrow microenvironment of patients with MPN may contribute. In particular, recent studies have implicated transforming growth factor-β (TGF-β), platelet-derived growth factor and CXCL4 in the development of myelofibrosis. Here, we test the specific hypothesis that TGF-β signaling in mesenchymal stromal cells is required for the development of myelofibrosis. Moreover, we hypothesize that TGF-β signaling, by altering the expression of key niche factors by mesenchymal stromal cells, contributes to the myeloid expansion in MPN. To test this hypothesis, we abrogated TGF-β signaling in mesenchymal stem/progenitor cells (MSPCs) by deleting Tgfbr2 using a doxycycline-repressible Sp7 (osterix)-Cre transgene (Osx-Cre), which targets all mesenchymal stromal cells in the bone marrow, including CXCL12-abundant reticular (CAR) cells, osteoblasts, adipocytes, or arteriolar pericytes. We previously showed that TGF-β signaling plays a key role in the lineage specification of MSPCs during development (2017 ASH abstract #2438). In contrast, we show that post-natal deletion of Tgfbr2, by removing doxycycline at birth, is not associated with significant changes in mesenchymal stromal cells in the bone marrow. Moreover, expression of key niche factors, including Cxcl12 and stem cell factor, and basal hematopoiesis were normal in these mice. Thus, we used the post-natal Osx-Cre; Tgfbr2-deleted mice as recipients to assess the role of TGF-β signaling in mesenchymal stromal cells on the hematopoietic and myelofibrosis phenotype in Jak2V617For MPLW515Lmodels of MPN. Specifically, we transplanted hematopoietic cells from Mx1-Cre; Jak2V617Fmice (4 weeks after pIpC treatment) or hematopoietic cells transduced with MPLW515Lretrovirus into irradiated wildtype or post-natal Osx-Cre; Tgfbr2-deleted mice. Both MPN models have elevated Tgfb1 expression in the bone marrow. As reported previously, transplantation of MPLW515Ltransduced hematopoietic cells into wildtype recipients produced a rapidly fatal MPN characterized by neutrophilia, erythrocytosis, thrombocytosis, splenomegaly, and reticulin fibrosis in the bone marrow. A similar hematopoietic phenotype was observed in Osx-Cre; Tgfbr2fl/flrecipients. However, a trend to decreased reticulin fibrosis was observed in Osx-Cre; Tgfbr2fl/flcompared to wildtype recipients (reticulin histology score: 0.5 versus 1.1, respectively, n=5, p=0.23). Likewise, the degree of neutrophilia, erythrocytosis, thrombocytosis, and splenomegaly in wildtype and Osx-Cre; Tgfbr2fl/flrecipients of Jak2V617Fcells was similar. As reported previously, we did not observe overt myelofibrosis in this model (as measured by reticulin staining). However, we were able to detect increased collagen III deposition using immunofluorescence staining in 4 of 5 wildtype recipients compared to 1 of 4 Osx-Cre Tgfbr2fl/flrecipients of Jak2V617Fcells (p=0.21). In conclusion, our data suggest that TGF-β signaling in mesenchymal stromal cells contributes, but is not absolutely required, for the development of myelofibrosis. Alterations in mesenchymal stromal cells induced by increased TGF-β signaling do not appear to be a major driver of the myeloid expansion in MPN. The contribution of increased TGF-β signaling in hematopoietic cells or other bone marrow stromal cell populations to the MPN phenotype is under investigation. Disclosures No relevant conflicts of interest to declare.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0182470 ◽  
Author(s):  
Teresa L. Ramos ◽  
Luis Ignacio Sánchez-Abarca ◽  
Beatriz Rosón-Burgo ◽  
Alba Redondo ◽  
Ana Rico ◽  
...  

2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Rebekka K Schneider ◽  
Susanne Ziegler ◽  
Isabelle Leisten ◽  
Monica SV Ferreira ◽  
Anne Schumacher ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2831-2831
Author(s):  
Teresa L. Ramos ◽  
Luis Ignacio Sánchez-Abarca ◽  
Rosón Beatriz ◽  
Concepción Rodríguez Serrano ◽  
Alba Redondo ◽  
...  

Abstract JAK2-V617F mutation in hematopoietic stem cells (HSC) is a common finding in myeloproliferative neoplasms (MPNs). Although alterations in the hematopoietic microenvironment have been described in these entities, information on the functional and genetic characteristics of bone marrow (BM) derived mesenchymal stromal cells (BM-MSC) from JAK2+ MPNs patients is scarce. The aim of the current study was to characterize and compare BM-MSC from 24 MPNs patients with JAK2V617F mutation (14 BM-MSC from essential thrombocythemia-ET and 10 BM-MSC from polycythemia vera-PV) with those from 14 healthy donors-HD. For this purpose BM-MSC expansion, multilineage differentiation, apoptosis, inmunophenotyping, gene expression profiling, RT-PCR and Western Blot analysis were performed. Compared with HD, BM-MSC from MPNs patients showed similar morphology and differentiation capacity, but an increased proliferation rate with less apoptosis cells. BM-MSC from MPNs expressed comparable levels of CD73, CD44, CD90 and CD166, whereas they were negative for hematopoietic markers. The median expression of CD105 was lower in BM-MSC from MPNs patients (p <.05) when compared with BM-MSC from HD. Gene expression profile of BM-MSCs from 8 JAK2V617F (4 PV/4 TE) patients, and from 10 HD showed a total of 169 genes that were differentially expressed in BM-MSC from MPNs patients compared to HD. RT-PCR was performed in two genes to confirm these results, demonstrating that HDAC8 and CXCL12 genes were up-regulated. To analyze whether these changes in MPNs-MSC conferred an alteration in their functional capacity, co-cultures with CD34+ cells from MPNs and BM-MSC were performed. A significant increase in the CFU-GM clonogenic supporting capacity of MPNs-MSC when compared with HD-MSC was observed. To evaluate whether a Histone deacetylase (HDAC) inhibitor could modify the behavior of MPNs-MSC an HDAC8 specific inhibitor, PCI-34051 was used. A decrease in HDAC8 gene (RT-PCR) and protein (WB analysis) expression was observed in BM-MSC from MPNs treated with PCI-34051 at a concentration of 25µM for 48 hours. HDAC8-selective inhibition also induced a cell cycle arrest in the MPNs BM-MSC with an increase of the proportion of apoptotic cells. To assess the impact of this inhibition on the capacity of MPNs-MSC to support hematopoiesis, BM mononuclear cells (BM-MNC) were co-cultured in transwell for 48 hours with PCI-34051-treated and non-treated BM-MSC. After co-culture, cell viability, clonogenic (CFU-GM) assays and TP53 expression were analyzed. A decrease in cell viability (p=0.028) and CFU-GM (p=0.018) was demonstrated when BM-MNC from MPNs had been in culture with MPNs BM-MSC treated with the HDAC8 inhibitor, as well as an increase in TP53 expression. These results suggest that MPNs-MSC display different proliferative rate, MSC markers, gene expression profile and HDAC8 overexpression compared to HD-MSC. The inhibition of HDAC8 expression by its specific inhibitor decreases the capacity of the stroma to support hematopoietic cells from MPNs patients, suggesting that HDAC8 may be a potential therapeutic target in this setting. Disclosures Sánchez-Guijo: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy, Speakers Bureau; Ariad: Consultancy, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 470-470
Author(s):  
Juo-Chin Yao ◽  
Grazia Abou Ezzi ◽  
Joseph R. Krambs ◽  
Salil Uttarwar ◽  
Eric J. Duncavage ◽  
...  

TGF-β expression is elevated in most cases of myeloproliferative neoplasms (MPNs). However, the contribution of TGF-β to disease pathogenesis is not well understood. Prior studies have shown that TGF-β regulates hematopoietic stem cell (HSC) quiescence. There also is published evidence that increased TGF-β may contribute to myelofibrosis. However, this is controversial, as recent studies have implicated other inflammatory cytokines in the development of myelofibrosis. Here, we test two specific hypotheses. First, we hypothesize that increased TGF-β signaling in mesenchymal stromal cells (MSCs) is required for the development of myelofibrosis. Second, we hypothesize that Jak2 mutated HSCs are resistant to the growth suppressive effect of TGF-β, resulting in a competitive advantage that contributes to their clonal expansion in MPN and clonal hematopoiesis. To test the first hypothesis, we abrogated TGF-β signaling in mesenchymal stem/progenitor cells by deleting Tgfbr2 using a doxycycline-repressible Osterix-Cre transgene (Osx-Cre), which targets all mesenchymal stromal cells in the bone marrow. Osx-Cre was induced at birth (by removal of doxycycline), since we recently reported that the post-natal loss of TGF-β signaling in mesenchymal stromal cells has no discernible effect on basal hematopoiesis or the stem cell niche. We transplanted bone marrow cells from UBC-CreERT2; Jak2V617F mice or c-kit+ cells transduced with MPLW515L retrovirus into irradiated wildtype or Osx-Cre; Tgfbr2f/fmice. For the Jak2V617F model, mice were treated with tamoxifen 6 weeks post transplantation to induce mutant Jak2 expression. Of note, elevated Tgfb1 was present in both MPN models. MPLW515L induced a rapidly fatal MPN with reticulin fibrosis in the bone marrow. A similar hematopoietic phenotype was observed in Osx-Cre; Tgfbr2f/f recipients. However, myelofibrosis, as measured by reticulin staining and Collagen III (Col3a1) mRNA expression, was reduced, but not completely abrogated in Osx-Cre; Tgfbr2f/fmice. Likewise, in the Jak2V617F MPN model, the hematopoietic phenotype was similar in wildtype and Osx-Cre; Tgfbr2f/fmice. Although overt myelofibrosis was not observed in this MPN model, increased RNA and protein expression of Collagen III were detected in the bone marrow. Although still above baseline, Col3a1 expression was significantly reduced in Osx-Cre; Tgfbr2f/frecipient mice. To examine the role of canonical TGF-β signaling in the induction of myelofibrosis, we cultured bone marrow derived MSCs from wildtype and Osx-Cre; Smad4f/f mice, in which canonical TGF-β signaling is abrogated. Treatment of wildtype MSC cultures with TGF-β1 induced the expression of fibrosis associated genes, including Col1a1 and Acta2, and down-regulated expression of key niche factors, including Cxcl12, Scf, and Bglap. Surprisingly, TGF-β1-induced expression of Col1a1 was intact in Smad4-deleted MSC cultures. Conversely, treatment of wildtype MSC cultures with the JNK inhibitor SP600125 abrogated TGF-β1-induced expression of Col1a1. Collectively, these data suggest that TGF-β signaling in MSCs contributes to the development of myelofibrosis in MPN through activation of the non-canonical JNK pathway. To test the second hypothesis, we set up a competitive transplantation assays using wildtype and Jak2V617F hematopoietic cells in which Tgfbr2 had been deleted to abrogate TGF-β signaling in HSCs. Specifically, we transplanted UBC-CreERT2; Jak2V617F; Tgfbr2f/f and UBC-CreERT2; Tgfbr2f/f bone marrow cells at 1:5 ratio into lethally irradiated wild type recipients. For control, we transplanted a 1:5 ratio of UBC-CreERT2; Jak2V617F to wild type cells. Mice were treated with tamoxifen to activate Cre expression 6 weeks post transplantation. Complete blood counts and donor chimerism were measured 6, 10, 14 and 18 weeks after tamoxifen. As expected, in the control group, donor chimerism with Jak2 mutated cells increased over time in myeloid lineages. In contrast, in the Tgfbr2-deleted group, no expansion of Jak2 mutated cells was observed. These data support our hypothesis that Jak2 mutated HSCs are resistant to the growth suppressive effect of TGF-β, providing a selective advantage that contributes to their clonal expansion in MPN and possibly clonal hematopoiesis. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document