PI-5Intravesical corticotropin-releasing hormone (CRH) induces mast cell-dependent vascular endothelial growth factor (VEGF) release from mouse bladder explants

2006 ◽  
Vol 79 (2) ◽  
pp. P8-P8
Author(s):  
J CAO ◽  
W BOUCHER ◽  
J DONELAN ◽  
T THEOHARIDES
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gen Kuroyanagi ◽  
Go Sakai ◽  
Takanobu Otsuka ◽  
Naohiro Yamamoto ◽  
Kazuhiko Fujita ◽  
...  

Abstract Background Heat shock protein 22 (HSP22) belongs to class I of the small HSP family that displays ubiquitous expression in osteoblasts. We previously demonstrated that prostaglandin F2α (PGF2α), a potent bone remodeling factor, induces the synthesis of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether HSP22 is implicated in the PGF2α-induced synthesis of IL-6 and VEGF and the mechanism of MC3T3-E1 cells. Methods MC3T3-E1 cells were transfected with HSP22-siRNA. IL-6 and VEGF release was assessed by ELISA. Phosphorylation of p44/p42 MAP kinase and p38 MAP kinase was detected by Western blotting. Results The PGF2α-induced release of IL-6 in HSP22 knockdown cells was significantly suppressed compared with that in the control cells. HSP22 knockdown also reduced the VEGF release by PGF2α. Phosphorylation of p44/p42 MAP kinase and p38 MAP kinase was attenuated by HSP22 downregulation. Conclusions Our results strongly suggest that HSP22 acts as a positive regulator in the PGF2α-induced synthesis of IL-6 and VEGF in osteoblasts.


2021 ◽  
Vol 42 ◽  
pp. 100506
Author(s):  
Samanta Rios Melo ◽  
Eric Vieira Januário ◽  
Erika Zanuto ◽  
Bruna de Castro Miranda ◽  
Thais Rodrigues Macedo ◽  
...  

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Alon Hendel ◽  
David J Granville

Introduction The formation of unstable and leaky neovessels underlies the pathogenesis of a large number of chronic inflammatory diseases. Granzyme B (GZMB) is a serine protease that is expressed and released by a variety of immune cells and accumulates in the extracellular matrix (ECM) during chronic inflammation where it cleaves a number of ECM proteins, including fibronectin (FN). Vascular endothelial growth factor (VEGF) is a potent vascular permeabilizing agent that is sequestered in the ECM by binding FN in both normal and diseased tissue. We hypothesize that GZMB cleavage of FN will release VEGF from its extracellular stores and promote vascular permeability as a mechanism that contributes to neovessel leakage during chronic inflammation. Methods GZMB-mediated VEGF release from either FN coated wells or endogenously produce endothelial cell (EC) matrix was measured by VEGF ELISA. VEGF-release supernatants were used to treat EC and VEGF receptor 2 (VEGFR2) activation was evaluated by immunoblotting for phosphorylated VEGFR2. Evan’s blue was injected intravenously to CD1 mice followed by ear injection of either mouse GZMB, saline control, GZMB + neutralizing mouse VEGF antibody or GZMB+ IgG control (n=5 for each experimental group). Vascular leakage was evaluated by Evan’s blue dye extraction. Results GZMB effectively releases VEGF from both FN and from EC matrix, while inhibition of GZMB prevented VEGF release. GZMB-mediated VEGF release resulted in significant activation of VEGFR2 in EC monolayer signified by increased VEGFR2 phosphorylation. GZMB ear injection resulted in a significant increase in vascular permeability in vivo. Importantly, co-injection of GZMB and neutralizing mouse VEGF antibody significantly reduced vascular leakage compared to co-injection of GZMB and matching IgG control. Conclusions and Impact GZMB increases VEGF bioavailability by releasing it from the ECM leading to VEGFR2 activation and increased vascular permeability in vivo. These findings present a novel role for GZMB as a modulator of vascular response during chronic inflammation.


Sign in / Sign up

Export Citation Format

Share Document