Modeling plasticity of cubic crystals using a nonlocal lattice particle method

2021 ◽  
Vol 385 ◽  
pp. 114069
Author(s):  
Changyu Meng ◽  
Haoyang Wei ◽  
Hailong Chen ◽  
Yongming Liu
Author(s):  
J. W. Matthews ◽  
W. M. Stobbs

Many high-angle grain boundaries in cubic crystals are thought to be either coincidence boundaries (1) or coincidence boundaries to which grain boundary dislocations have been added (1,2). Calculations of the arrangement of atoms inside coincidence boundaries suggest that the coincidence lattice will usually not be continuous across a coincidence boundary (3). There will usually be a rigid displacement of the lattice on one side of the boundary relative to that on the other. This displacement gives rise to a stacking fault in the coincidence lattice.Recently, Pond (4) and Smith (5) have measured the lattice displacement at coincidence boundaries in aluminum. We have developed (6) an alternative to the measuring technique used by them, and have used it to find two of the three components of the displacement at {112} lateral twin boundaries in gold. This paper describes our method and presents a brief account of the results we have obtained.


Author(s):  
Kenneth S. Vecchio ◽  
David B. Williams

Since the discovery in 1984 by Shechtman et al. of crystals which display apparent five-fold symmetry, extensive effort has been given to establishing a theoretical basis for the existence of icosahedral phases (eg.2.). Several other investigations have been centered on explaining these observations based on twinning of cubic crystals (eg.3.). Recently, the existence of a stable, equilibrium phase T2Al6 Li3Cu) possessing an icosahedral structure has been reported in the Al-Li-Cu system(4-6).In the present study an Al-2.6wt.%Li-l.5wt.%Cu-0.lwt.%Zr alloy was heat treated at 300°C for 100hrs. to produce large T2 precipitates. Convergent Beam Electron Diffraction (CBED) patterns were obtained from two-fold, three-fold, and apparent five-fold axes of T2 particles. Figure 1 shows the five-fold symmetric zero layer CBED pattern obtained from T2 particles.


2019 ◽  
Vol 85 (5) ◽  
pp. 28-32
Author(s):  
A. S. Kolyanova ◽  
Y. N. Yaltsev

A calculation method for obtaining the misorientation distribution function (MDF) for cubic crystals which can be used to estimate the presence or absence of special boundaries in the materials is presented. The calculation was carried out for two samples of Al-Mg-Si alloy subjected to various mechanical and thermal treatments: the first sample is subjected to rolling; the second sample is subjected to recrystallization annealing. MDF is calculated for each sample; the results are presented in the Euler space and in the angle-axis space. The novelty of the method consists in the possibility of gaining data on the grain boundaries from X-ray texture analysis without using electron microscopy. A calculation involving only mathematical operations on matrices was performed on the basis of the orientation distribution function restored from incomplete pole figures. It is shown that no special boundaries are observed in the deformed sample, whereas in the recrystallized alloy, special boundaries are detected at Ʃ = 23, 13, and 17. The shortcoming of the proposed method can be attributed to the lack of accurate data on grain boundaries, since all possible orientation in the polycrystal should be taken into account in MDF calculation.


Sign in / Sign up

Export Citation Format

Share Document