misorientation distribution
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 1)

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 976 ◽  
Author(s):  
Sergey Mironov ◽  
Yutaka S. Sato ◽  
Hiroyuki Kokawa ◽  
Satoshi Hirano ◽  
Adam L. Pilchak ◽  
...  

The present work was undertaken to shed additional light on the globular-α microstructure produced during FSP of Ti-6Al-4V. To this end, the electron backscatter diffraction (EBSD) technique was employed to characterize the crystallographic aspects of such microstructure. In contrast to the previous reports in the literature, neither the texture nor the misorientation distribution in the α phase were random. Although the texture was weak, it showed a clear prevalence of the P1 and C-fiber simple-shear orientations, thus providing evidence for an increased activity of the prism-<a> and pyramidal <c+a> slip systems. In addition, the misorientation distribution exhibited a crystallographic preference of 60° and 90° boundaries. This observation was attributed to a partial α→β→α phase transformation during/following high-temperature deformation and the possible activation of mechanical twinning.


2020 ◽  
Vol 985 ◽  
pp. 97-108
Author(s):  
Mouhamadou Moustapha Sarr ◽  
Motohiro Yuasa ◽  
Hiroyuki Miyamoto

This study aims to investigate the effect of processing routes (A and Bc) and temperature on microstructure, texture and mechanical properties of pure magnesium was studied in this research. An extruded pure magnesium (~99,9 %) was subjected to severe plastic deformation (SPD) by ECAP. Deformation was conducted at 523K and 473K and two different processing routes (A and Bc) were used to control the texture. The microstructure and texture characterization of the pressed materials were carried out. It was found that the microstructure displayed a bimodal grain structure after two passes and then became homogeneous after four passes following both routes A and Bc. The misorientation distribution was examined and the results revealed that the fraction of high angle grain boundaries (HAGB) was higher at temperature 473K. The texture was randomized following route Bc whereas it became strengthened in route A after four passes. According to the Hall-Petch (HP) relationship, the yield stress of polycrystalline metals increases with a decrease in grain size. In this study, a positive slope k was achieved in the strengthened texture while a negative one was obtained in the softened texture. The ductility of ECAP processed material was considerably improved (from 23% to 38%) without sacrificing the yield stress by route Bc at 423K.


2019 ◽  
Vol 85 (5) ◽  
pp. 28-32
Author(s):  
A. S. Kolyanova ◽  
Y. N. Yaltsev

A calculation method for obtaining the misorientation distribution function (MDF) for cubic crystals which can be used to estimate the presence or absence of special boundaries in the materials is presented. The calculation was carried out for two samples of Al-Mg-Si alloy subjected to various mechanical and thermal treatments: the first sample is subjected to rolling; the second sample is subjected to recrystallization annealing. MDF is calculated for each sample; the results are presented in the Euler space and in the angle-axis space. The novelty of the method consists in the possibility of gaining data on the grain boundaries from X-ray texture analysis without using electron microscopy. A calculation involving only mathematical operations on matrices was performed on the basis of the orientation distribution function restored from incomplete pole figures. It is shown that no special boundaries are observed in the deformed sample, whereas in the recrystallized alloy, special boundaries are detected at Ʃ = 23, 13, and 17. The shortcoming of the proposed method can be attributed to the lack of accurate data on grain boundaries, since all possible orientation in the polycrystal should be taken into account in MDF calculation.


2018 ◽  
Vol 4 (1) ◽  
pp. 342 ◽  
Author(s):  
V I Skrytnyy ◽  
M V Gavrilov ◽  
T P Khramtsova ◽  
A S Kolyanova ◽  
A S Krasnov ◽  
...  

.


Micron ◽  
2018 ◽  
Vol 107 ◽  
pp. 28-34 ◽  
Author(s):  
Nitin Kumar Sharma ◽  
Shashank Shekhar

2018 ◽  
Vol 143 ◽  
pp. 227-236 ◽  
Author(s):  
K.D. Zilnyk ◽  
D.R. Almeida Junior ◽  
H.R.Z. Sandim ◽  
P.R. Rios ◽  
D. Raabe

2018 ◽  
Vol 8 (3) ◽  
pp. 305-310 ◽  
Author(s):  
N. Yu. Zolotorevsky ◽  
V. V. Rybin ◽  
A. N. Matvienko ◽  
E. A. Ushanova ◽  
S. N. Sergeev

Sign in / Sign up

Export Citation Format

Share Document