MISORIENTATION DISTRIBUTION FUNCTION FOR CUBIC CRYSTALS

2019 ◽  
Vol 85 (5) ◽  
pp. 28-32
Author(s):  
A. S. Kolyanova ◽  
Y. N. Yaltsev

A calculation method for obtaining the misorientation distribution function (MDF) for cubic crystals which can be used to estimate the presence or absence of special boundaries in the materials is presented. The calculation was carried out for two samples of Al-Mg-Si alloy subjected to various mechanical and thermal treatments: the first sample is subjected to rolling; the second sample is subjected to recrystallization annealing. MDF is calculated for each sample; the results are presented in the Euler space and in the angle-axis space. The novelty of the method consists in the possibility of gaining data on the grain boundaries from X-ray texture analysis without using electron microscopy. A calculation involving only mathematical operations on matrices was performed on the basis of the orientation distribution function restored from incomplete pole figures. It is shown that no special boundaries are observed in the deformed sample, whereas in the recrystallized alloy, special boundaries are detected at Ʃ = 23, 13, and 17. The shortcoming of the proposed method can be attributed to the lack of accurate data on grain boundaries, since all possible orientation in the polycrystal should be taken into account in MDF calculation.

2020 ◽  
Vol 53 (2) ◽  
pp. 540-548 ◽  
Author(s):  
Gennady Rafailov ◽  
El'ad N. Caspi ◽  
Ralf Hielscher ◽  
Eitan Tiferet ◽  
Roni Schneck ◽  
...  

Knowledge of the appearance of texture components and fibres in pole figures, in inverse pole figures and in Euler space is fundamental for texture analysis. For cubic crystal systems, such as steels, an extensive literature exists and, for example, the book by Matthies, Vinel & Helming [Standard Distributions in Texture Analysis: Maps for the Case of Cubic Orthorhomic Symmetry, (1987), Akademie-Verlag Berlin] provides an atlas to identify texture components. For lower crystal symmetries, however, equivalent comprehensive overviews that can serve as guidance for the interpretation of experimental textures do not exist. This paper closes this gap by providing a set of scripts for the MTEX package [Bachmann, Hielscher & Schaeben (2010). Solid State Phenom. 160, 63–68] that allow the texture practitioner to compile such an atlas for a given material system, thus aiding orientation distribution function analysis also for non-cubic systems.


1993 ◽  
Vol 21 (2-3) ◽  
pp. 71-78
Author(s):  
H.-G. Brokmeier

This paper describes the application of neutron diffraction to investigate the texture of a zinc layer 8 μm in thickness. In a nondestructive way both the texture of the zinc layer as well as the texture of the steel substrate were studied. Therefore, pole figures of iron ((110), (200) and (211)) and of zinc ((0002), (101¯0), (101¯1); and (101¯3)/(112¯0)) were measured; additionally the orientation distribution function of iron and zinc were calculated.


1985 ◽  
Vol 29 ◽  
pp. 443-449
Author(s):  
Munetsugu Matsuo ◽  
Koichi Kawasaki ◽  
Tetsuya Sugai

AbstractAs a means for quantitative texture analysis, the crystallite orientation distribution function analysis has an important drawback: to bring ghosts as a consequence of the presence of a non-trivial kernel which consists of the spherical harmonics of odd order terms. In the spherical hamonic analysis, ghosts occur in the particular orientations by symmetry operation from the real orientation in accordance with the symmetry of the harmonics of even orders. For recovery of the odd order harmonics, the 9th-order generalized spherical harmonics are linearly combined and added to the orientation distribution function reconstructed from pole figures to a composite function. The coefficients of the linear combination are optimized to minimize the sum of negative values in the composite function. Reproducibility was simulated by using artificial pole figures of single or multiple component textures. Elimination of the ghosts is accompanied by increase in the height of real peak in the composite function of a single preferred orientation. Relative fractions of both major and minor textural components are reproduced with satisfactory fidelity In the simulation for analysis of multi-component textures.


2005 ◽  
Vol 495-497 ◽  
pp. 983-988
Author(s):  
N.Yu. Ermakova ◽  
Nikolay Y. Zolotorevsky ◽  
Yuri Titovets

The method is described which enables to determine the microtexture that is the orientation distribution within individual grains of a polycrystal. The microtexture is evaluated on the base of X-ray pole distributions measured for separate reflections, referred to as microscopic pole figures (MPF). The procedure for treatment of experimental MPF and the following computation of orientation distribution function is described in detail. Precision of the microtexture evaluation and possible ways of its improvement are discussed. As an example of the method application, orientation distribution within a single grain of aluminum polycrystal deformed by uniaxial compression up to 50% has been examined.


Texture ◽  
1972 ◽  
Vol 1 (1) ◽  
pp. 9-16 ◽  
Author(s):  
W. R. Krigbaum ◽  
Anna Marie Harkins Vasek

A test of the refinement procedure for improving the crystallite orientation distribution function is presented for a fiber texture sample of polyethylene terephthalate. This is a particularly difficult example because the triclinic unit cell offers no simplification due to symmetry, and the pole figures are sharply peaked. The analysis employed 17 observed pole figures and an additional 29 unobserved pole figures reconstructed from the crystallite orientation distribution function. After three cycles of refinement, in which the maximum value of the coefficient was increased from 6 to 16, the standard deviations, σq and σw, of the plane-normal and crystallite orientation distributions were reduced by about a factor of 3. The refined crystallite orientation distribution function indicates that the c-axis tends to align along the fiber axis for this polyethylene terephthalate sample.


1993 ◽  
Vol 20 (1-4) ◽  
pp. 165-177 ◽  
Author(s):  
R. Penelle ◽  
T. Baudin

The Orientation Distribution Function (O.D.F.) calculation is usually performed using pole figures measured by X-ray or neutron diffraction. However, this kind of experimental technique does not allow to determine a total ODF since the odd terms of the series expansion are not directly accessible from pole figures. The individual orientation measurement technique can be used but it is necessary to estimate the right orientation number necessary to calculate a statistically reliable ODF. For samples at the surface, at the fifth of the thickness from the surface and at the centre of a Fe 3% Si sheet, the present study shows that only 100 orientations are sufficient to find the main components of the texture but this number must be increased by a factor 10 to evaluate with a rather good accuracy the height of the peaks. In the case of a titanium alloy so called TA6V 350 orientations appear to be sufficient.


Sign in / Sign up

Export Citation Format

Share Document