Change of short-term memory effect in acute ischemic ventricular myocardium: A computational study

2014 ◽  
Vol 113 (2) ◽  
pp. 690-696
Author(s):  
Xi Mei ◽  
Jing Wang ◽  
Hong Zhang ◽  
Zhi-cheng Liu ◽  
Zhen-xi Zhang
EP Europace ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1594-1602
Author(s):  
Massimiliano Zaniboni ◽  
Francesca Cacciani

Abstract Aims This computational study refines our recently published pacing protocol to measure short-term memory (STM) of cardiac action potential (AP), and apply it to five numerical models of human ventricular AP. Methods and results Several formulations of electrical restitution (ER) have been provided over the years, including standard, beat-to-beat, dynamic, steady-state, which make it difficult to compare results from different studies. We discuss here the notion of dynamic ER (dER) by relating it to its steady-state counterpart, and propose a pacing protocol based on dER to measure STM under periodically varying pacing cycle length (CL). Under high and highly variable-pacing rate, all models develop STM, which can be measured over the entire sequence by means of dER. Short-term memory can also be measured on a beat-to-beat basis by estimating action potential duration (APD) adaptation after clamping CL constant. We visualize STM as a phase shift between action potential (AP) parameters over consecutive cycles of CL oscillations, and show that delay between CL and APD oscillation is nearly constant (around 92 ms) in the five models, despite variability in their intrinsic AP properties. Conclusion dER, as we define it and together with other approaches described in the study, provides an univocal way to measure STM under extreme cardiac pacing conditions. Given the relevance of AP memory for repolarization dynamics and stability, STM should be considered, among other usual biomarkers, to validate and tune cardiac AP models. The possibility of extending the method to in vivo cellular and whole organ models can also be profitably explored.


1993 ◽  
Vol 21 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Janice N. Steirn ◽  
Thomas R. Zentall ◽  
Lou M. Sherburne

2021 ◽  
pp. 152164
Author(s):  
Seokyeon Yun ◽  
Chandreswar Mahata ◽  
Min-Hwi Kim ◽  
Sungjun Kim

2019 ◽  
Vol 58 (10) ◽  
pp. 101004
Author(s):  
Myung-Hyun Baek ◽  
Taejin Jang ◽  
Hyungjin Kim ◽  
Jungjin Park ◽  
Min-Woo Kwon ◽  
...  

1973 ◽  
Vol 32 (3_suppl) ◽  
pp. 1197-1198
Author(s):  
Robert J. Yinger ◽  
William L. Johnson

This study investigated the effectiveness of a “forgetting cue” under different inter-stimulus intervals. Each S had each combination of 3 list conditions (2 trigrams, no cue; 2 trigrams, with cue; 1 trigram) and 3 inter-stimulus intervals (6, 15, and 40 sec.). Recall of the second trigram was measured. Performance with the cue was significantly better at 6 and 15 sec., while at 40 sec., there was no difference between 3 list conditions.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


2020 ◽  
Vol 29 (4) ◽  
pp. 710-727
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Alexander V. Sergeev ◽  
Natalie J. Benafield

Objectives School-age children with and without parent-reported listening difficulties (LiD) were compared on auditory processing, language, memory, and attention abilities. The objective was to extend what is known so far in the literature about children with LiD by using multiple measures and selective novel measures across the above areas. Design Twenty-six children who were reported by their parents as having LiD and 26 age-matched typically developing children completed clinical tests of auditory processing and multiple measures of language, attention, and memory. All children had normal-range pure-tone hearing thresholds bilaterally. Group differences were examined. Results In addition to significantly poorer speech-perception-in-noise scores, children with LiD had reduced speed and accuracy of word retrieval from long-term memory, poorer short-term memory, sentence recall, and inferencing ability. Statistically significant group differences were of moderate effect size; however, standard test scores of children with LiD were not clinically poor. No statistically significant group differences were observed in attention, working memory capacity, vocabulary, and nonverbal IQ. Conclusions Mild signal-to-noise ratio loss, as reflected by the group mean of children with LiD, supported the children's functional listening problems. In addition, children's relative weakness in select areas of language performance, short-term memory, and long-term memory lexical retrieval speed and accuracy added to previous research on evidence-based areas that need to be evaluated in children with LiD who almost always have heterogenous profiles. Importantly, the functional difficulties faced by children with LiD in relation to their test results indicated, to some extent, that commonly used assessments may not be adequately capturing the children's listening challenges. Supplemental Material https://doi.org/10.23641/asha.12808607


Sign in / Sign up

Export Citation Format

Share Document