Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch

2020 ◽  
Vol 187 ◽  
pp. 105258 ◽  
Author(s):  
Mostafa Pirmoradian ◽  
Hamed Ajabi Naeeni ◽  
Masih Firouzbakht ◽  
Davood Toghraie ◽  
Mohamad Khaje khabaz ◽  
...  
2012 ◽  
Vol 2 (1) ◽  
pp. 19 ◽  
Author(s):  
Bobin Saluja ◽  
Masood Alam ◽  
T Ravindranath ◽  
A Mubeen ◽  
Nidhi Adya ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 621
Author(s):  
Pooyan Rahmanivahid ◽  
Milad Heidari

Nowadays, root osseointegrated dental implants are used widely in dentistry mainly for replacement of the single missing tooth. The success rate of osseointegrated dental implants depends on different factors such as bone conditions; surgery insertion technique, loading history, and biomechanical interaction between jawbone and implant surface. In recent years, many studies have investigated design factors using finite element analysis with a concentration on major parameters such as diameter, pitch, and implant outlines in the distribution of stress in the bone-implant interface. There is still a need to understand the relationship and interaction of design factors individually with stress distribution to optimize implant structure. Therefore, the present study introduced a new dental implant and investigated the effect of design parameters on stress distribution. The finite element modeling was developed to facilitate the study with a comparison of design parameters. Boundary and loading conditions were implemented to simulate the natural situation of occlusal forces. Based on results, V-shape threads with maximum apex angle caused a high rate of micro-motion and high possibility of bone fracture. Low Von-Mises stress was associated with low bone growth stimulation. Besides, small fin threads did not integrate with cancellous bone and consequently lower stress accommodation. V-5 fin had no extraordinary performance in cancellous bone. Small surface areas of fins did not integrate with the surrounding bone and high-stress concentration occurred at the tail. These fins are recommended as threads replacement. It was concluded that the implant structure had less influence on stress distribution under horizontal loading.  


Author(s):  
Bijan Mohammadi ◽  
Zahra Abdoli ◽  
Ehsan Anbarzadeh

Today, an artificial tooth root called a dental implant is used to replace lost tooth function. Treatment with dental implants is considered an effective and safe method. However, in some cases, the use of dental implants had some failures. The success of dental implants is influenced by several biomechanical factors such as loading type, used material properties, shape and geometry of implants, quality and quantity of bone around implants, surgical method, lack of rapid and proper implant surface's integration with the jaw bone, etc. The main purpose of functional design is to investigate and control the stress distribution on dental implants to optimize their performance. Finite element analysis allows researchers to predict the stress distribution in the bone implant without the risk and cost of implant placement. In this study, the stresses created in the 3A.P.H.5 dental implant's titanium fixture and screw due to the change in abutment angles tolerance have been investigated. The results show that although the fixture and the screw's load and conditions are the same in different cases, the change of the abutment angle and the change in the stress amount also made a difference in the location of maximum stress. The 21-degree abutment puts the fixture in a more critical condition and increases the chance of early plasticization compared to other states. The results also showed that increasing the abutment angle to 24 degrees reduces the stress in the screw, but decreasing the angle to 21 degrees leads to increased screw stress and brings it closer to the fracture.


2014 ◽  
Vol 30 (4) ◽  
pp. e89-e97 ◽  
Author(s):  
Babak Bahrami ◽  
Shirin Shahrbaf ◽  
Behnam Mirzakouchaki ◽  
Farzan Ghalichi ◽  
Mohammed Ashtiani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document