Effect of flexible coastal vegetation on waves in water of intermediate depth

2021 ◽  
pp. 103937
Author(s):  
Jie Hu ◽  
Chiang C. Mei ◽  
Che-Wei Chang ◽  
Philip L-F. Liu
1984 ◽  
Vol 16 (3-4) ◽  
pp. 525-532
Author(s):  
E J Pullen ◽  
P L Knutson ◽  
A K Hurme

The Coastal Engineering Research Center at Fort Belvoir, Virginia, is responsible for research that supports the U.S. Army Corps of Engineers' Civil Works program. This research involves coastal navigation, channel design and maintenance, storm flooding, shore erosion control, and coastal ecology. The ecology research is focused on two major areas: (1) use of coastal vegetation for engineering purposes and (2) effects of coastal engineering activities on the biological environment. The objectives and accomplishments of the ecology research are discussed and specific examples of field guidance are presented.


2020 ◽  
Vol 108 (11) ◽  
pp. 873-877
Author(s):  
Tetsuji Yamaguchi ◽  
Saki Ohira ◽  
Ko Hemmi ◽  
Logan Barr ◽  
Asako Shimada ◽  
...  

AbstractSorption distribution coefficient (Kd) of niobium-94 on minerals are an important parameter in safety assessment of intermediate-depth disposal of waste from core internals etc. The Kd of Nb on clay minerals in Ca(ClO4)2 solutions were, however, not successfully modeled in a previous study. The high distribution coefficients of Nb on illite in Ca(ClO4)2 solutions were successfully reproduced by taking Ca–Nb–OH surface species into account. Solubility of Nb was studied in Ca(ClO4)2 solutions and the results were reproduced by taking an aqueous Ca–Nb–OH complex species, CaNb(OH)6+, into account in addition to previously reported Nb(OH)6− and Nb(OH)72−. Based on this aqueous speciation model, the Ca–Nb–OH surface species responsible for the sorption of Nb on illite in Ca(ClO4)2 solutions was presumed to be X_OCaNb(OH)6. Although uncertainties exist in the speciation of aqueous Ca–Nb–OH species, the result of this study proposed a possible mechanism for high distribution coefficient of Nb on illite in Ca(ClO4)2 solutions. The mechanism includes Ca–Nb–OH complex formation in aqueous, solid and surface phases.


2021 ◽  
Vol 799 ◽  
pp. 228688
Author(s):  
Laura Petrescu ◽  
Felix Borleanu ◽  
Mircea Radulian ◽  
Alik Ismail-Zadeh ◽  
Liviu Maţenco

2010 ◽  
Vol 2 (2-3) ◽  
pp. 105-111 ◽  
Author(s):  
Patrick Hesp ◽  
Phillip Schmutz ◽  
M.L. (Marisa) Martinez ◽  
Luke Driskell ◽  
Ryan Orgera ◽  
...  
Keyword(s):  

Author(s):  
Jun Tang ◽  
Yongming Shen

Coastal vegetation can not only provide shade to coastal structures but also reduce wave run-up. Study of long water wave climb on vegetation beach is fundamental to understanding that how wave run-up may be reduced by planted vegetation along coastline. The present study investigates wave period influence on long wave run-up on a partially-vegetated plane slope via numerical simulation. The numerical model is based on an implementation of Morison’s formulation for rigid structures induced inertia and drag stresses in the nonlinear shallow water equations. The numerical scheme is validated by comparison with experiment results. The model is then applied to investigate long wave with diverse periods propagating and run-up on a partially-vegetated 1:20 plane slope, and the sensitivity of run-up to wave period is investigated based on the numerical results.


2016 ◽  
Vol 20 (2) ◽  
pp. 183-193 ◽  
Author(s):  
Robin J. Pakeman ◽  
Richard L. Hewison ◽  
Rob J. Lewis

2005 ◽  
Vol 92 (9) ◽  
pp. 1513-1519 ◽  
Author(s):  
G. Matallana ◽  
T. Wendt ◽  
D. S. D. Araujo ◽  
F. R. Scarano

Sign in / Sign up

Export Citation Format

Share Document