Experimental investigation on the erosion behaviors of frozen-thawed sandstone under abrasive supercritical CO2 jet impingement

Author(s):  
Mengda Zhang ◽  
Zhenlong Fang ◽  
Yong Kang ◽  
Xiaochuan Wang ◽  
Man Huang ◽  
...  
Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


Author(s):  
Pushpanjay K. Singh ◽  
M. Renganathan ◽  
Harekrishna Yadav ◽  
Santosh K. Sahu ◽  
Prabhat K. Upadhyay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document