EXPERIMENTAL INVESTIGATION OF CARBON DIOXIDE DRY-ICE ASSISTED JET IMPINGEMENT COOLING PERFORMANCE

Author(s):  
Dongsu Kim ◽  
Jaeseon Lee
Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Haruhiko Yamasaki ◽  
Önder Kizilkan ◽  
Hiroshi Yamaguchi ◽  
Takeshi Kamimura ◽  
Kazuhiro Hattori ◽  
...  

Author(s):  
Alexandros Terzis ◽  
Guillaume Wagner ◽  
Peter Ott

This study examines experimentally the cooling performance of integrally cast impingement cooling channels which provide increased heat transfer area compared to traditional impingement configurations. For the evaluation of the heat transfer coefficient, the transient liquid crystal method was used. Full surface heat transfer coefficient distributions on the target plate and the side walls of the channel have been measured by recording the temperature history of liquid crystals using a frame grabber. Several impingement cooling geometries have been tested composing a test matrix of nine different geometrical configurations. The experimental data are analyzed by means of various post-processing procedures and aim to clarify and quantify the effect of hole staggering on the overall cooling performance, a variable which has been little addressed in the open literature. The experiments were carried out in a low speed wind tunnel over a wide range of Reynolds numbers between 15,000 and 100,000. The results indicated similarities with convectional multi-jet impingement cooling systems as well as a noticeable effect of the cooling hole pattern. Finally, an error propagation analysis of the experimental uncertainties was performed providing information for the significance of scatter on repeated experiments.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Kai Chen ◽  
Rui-Na Xu ◽  
Pei-Xue Jiang

Jet impingement cooling is widely used in many industrial applications due to its high heat transfer capability and is an option for advanced high power density systems. Jet impingement cooling with supercritical pressure fluids could have much larger heat transfer rates combining with the large fluid specific heat near the pseudocritical point. However, the knowledge of its flow and heat transfer characteristics is limited. In this study, the flow and the local and average heat transfer characteristics of jet impingement cooling with supercritical pressure fluids were studied experimentally with carbon dioxide first. An integrated thermal sensor chip that provided heating and temperature measurements was manufactured using micro-electro-mechanical systems (MEMS) techniques with a low thermal conductivity substrate as the impingement cooled plate. The experiment system pressure was 7.85 MPa, which is higher than the critical pressure of carbon dioxide of 7.38 MPa. The mass flow rate ranged from 8.34 to 22.36 kg/h and the Reynolds number ranged from 19,000 to 68,000. The heat flux ranged from 0.02 to 0.22 MW/m2. The nozzle inlet temperature ranged from lower to higher than the pseudocritical temperature. Dramatic variations of the density at supercritical pressures near the heating chip were observed with increasing heat flux in the strong reflection and refraction of the backlight that disappeared at inlet temperatures higher than the pseudocritical temperature. The local heat transfer coefficient near the stagnation point increased with increasing heat flux while those far from the stagnation point increased to a maximum with increasing heat flux and then decreased due to the nonuniformity of jet impingement cooling. The heat transfer is higher at inlet temperatures lower than the pseudocritical temperature and the surface temperature is slightly higher than the pseudocritical temperature due to the dramatic changes in the fluid thermo-physical properties at supercritical pressures.


Sign in / Sign up

Export Citation Format

Share Document