Facile approach for developing gold nanorods with various aspect ratios for an efficient photothermal treatment of cancer

Author(s):  
L.A.M. Al-Sagheer ◽  
A. Alshahrie ◽  
Waleed E. Mahmoud
2016 ◽  
Vol 7 ◽  
pp. 809-816 ◽  
Author(s):  
Majid K Abyaneh ◽  
Pietro Parisse ◽  
Loredana Casalis

Herein, we present the formation of gold nanorods (GNRs) on novel gold–poly(methyl methacrylate) (Au–PMMA) nanocomposite substrates with unprecedented growth control through the polymer molecular weight (M w) and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer M w and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower M w PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method.


2020 ◽  
Vol 3 (3) ◽  
pp. 1374-1384 ◽  
Author(s):  
Deshani Fernando ◽  
Shoukath Sulthana ◽  
Yolanda Vasquez

2006 ◽  
Vol 4 (1) ◽  
pp. 160-165 ◽  
Author(s):  
Tom Mortier ◽  
André Persoons ◽  
Thierry Verbiest

AbstractWe describe a very simple, two-step synthetic method to prepare gold nanorods with extremely high aspect ratios (> 20) and average lengths of more than 1000 nm. The method is based on a seed-mediated growth in presence of the surfactant cetyltrimethylammonium bromide. The length and aspect ratios of the nanorods can be manipulated by varying the surfactant concentration.


Small ◽  
2016 ◽  
Vol 12 (37) ◽  
pp. 5178-5189 ◽  
Author(s):  
Hongrong Yang ◽  
Zhong Chen ◽  
Lei Zhang ◽  
Wing-Yin Yung ◽  
Ken Cham-Fai Leung ◽  
...  

2014 ◽  
Vol 602-603 ◽  
pp. 993-997
Author(s):  
Gui Jun Ban ◽  
Xiu Li Fu ◽  
Zhi Jian Peng

Gold nanorods with different aspect ratios, exhibiting localized surface plasmon resonance in a tuned longitudinal mode, were prepared by employing a seed mediated growth approach. Their third-order nonlinear optical properties were investigated by using femtosecond Z-scan technique at 800 nm. All the prepared gold nanorods with different aspect ratios exhibited a reverse saturation absorbance behavior, and the value of effective nonlinear absorption coefficient reaches its maximum when the longitudinal surface plasmon resonance peak of the gold nanorods located near the excitation wavelength.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3458 ◽  
Author(s):  
Chao Zhuang ◽  
Yifan Xu ◽  
Ningsheng Xu ◽  
Jinxiu Wen ◽  
Huanjun Chen ◽  
...  

Plasmonic gold nanorods play important roles in nowadays state-of-the-art plasmonic sensing techniques. Most of the previous studies and applications focused on gold nanorods with relatively small aspect ratios, where the plasmon wavelengths are smaller than 900 nm. Gold nanorods with large aspect ratios are predicted to exhibit high refractive-index sensitivity (Langmir 2008, 24, 5233–5237), which therefore should be promising for the development of high-performance plasmonic chemical- and bio-sensors. In this study, we developed gold nanorods with aspect ratios over 7.9, which exhibit plasmon resonances around 1064 nm. The refractive index (RI) sensitivity of these nanorods have been evaluated by varying their dielectric environment, whereby a sensitivity as high as 473 nm/RIU (refractive index unit) can be obtained. Furthermore, we have demonstrated the large-aspect-ratio nanorods as efficient substrate for surface enhanced Raman spectroscopy (SERS), where an enhancement factor (EF) as high as 9.47 × 108 was measured using 4-methylbenzenethiol (4-MBT) as probe molecule. Finally, a type of flexible SERS substrate is developed by conjugating the gold nanorods with the polystyrene (PS) polymer. The results obtained in our study can benefit the development of plasmonic sensing techniques utilized in the near-infrared spectral region.


RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25469-25474 ◽  
Author(s):  
Yumin Leng ◽  
Xunjun Yin ◽  
Fang Hu ◽  
Yuehong Zou ◽  
Xiaojing Xing ◽  
...  

Tight-controlling of the aspect ratios (ARs) and fine-tailoring of the crystallographic facets of gold nanorods (GNRs) are critical for their further applications in material, biological, and medical fields.


2014 ◽  
Vol 16 (12) ◽  
Author(s):  
Yun Wang ◽  
Feihu Wang ◽  
Yuan Guo ◽  
Rongjun Chen ◽  
Yuanyuan Shen ◽  
...  

2014 ◽  
Vol 5 ◽  
pp. 546-553 ◽  
Author(s):  
Tianxun Gong ◽  
Douglas Goh ◽  
Malini Olivo ◽  
Ken-Tye Yong

In this work, we investigated the cytotoxicity, colloidal stability and optical property of gold nanorods before and after functionalizing them with thiolated PEG and Pluronic triblock copolymer (PEO–PPO–PEO) molecules. The morphology of functionalized gold nanorods was characterized by UV–visible absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. Solution phase synthesis of gold nanorods has remained the method of choice for obtaining varying shapes and aspect ratios of rod nanoparticles. This method typically involves the use of cetyltrimethylammonium bromide (CTAB) surfactants as directing agents to grow gold nanorods in the solution phase. The as-synthesized gold nanorods surfaces are terminated with CTAB molecules and this formulation gives rise to adverse toxicity in vitro and in vivo. To employ the gold nanorods for biological studies, it is important to eliminate or minimize the exposure of CTAB molecules from the gold nanorods surface to the local environment such as cells or tissues. Complete removal of CTAB molecules from the gold nanorods surface is unfeasible as this will render the gold nanorods structurally unstable, causing the aggregation of particles. Here, we investigate the individual use of thiolated PEG and PEO–PPO–PEO as capping agents to reduce the cytotoxicity of gold nanorods formulation, while maintaining the optical, colloidal, and structural properties of gold nanorods. We found that encapsulating gold nanorods with the thiolated PEG or PEO–PPO–PEO molecules guarantees the stability and biocompatibility of the nanoformulation. However, excessive use of these molecules during the passivation process leads to a reduction in the overall cell viability. We also demonstrate the use of the functionalized gold nanorods as scattering probes for dark-field imaging of cancer cells thereby demonstrating their biocompatibility. Our results offer a unique solution for the future development of safe scattering color probes for clinical applications such as the long term imaging of cells and tissues.


Sign in / Sign up

Export Citation Format

Share Document