Cell adhesion on chiral surface: The role of protein adsorption

2012 ◽  
Vol 90 ◽  
pp. 97-101 ◽  
Author(s):  
Feng Zhou ◽  
Lin Yuan ◽  
Dan Li ◽  
He Huang ◽  
Taolei Sun ◽  
...  
2011 ◽  
Vol 11 (10) ◽  
pp. 1378-1386 ◽  
Author(s):  
Vera A. Schulte ◽  
Mar Diez ◽  
Martin Möller ◽  
Marga C. Lensen

1989 ◽  
Vol 61 (03) ◽  
pp. 485-489 ◽  
Author(s):  
Eva Bastida ◽  
Lourdes Almirall ◽  
Antonio Ordinas

SummaryBlood platelets are thought to be involved in certain aspects of malignant dissemination. To study the role of platelets in tumor cell adherence to vascular endothelium we performed studies under static and flow conditions, measuring tumor cell adhesion in the absence or presence of platelets. We used highly metastatic human adenocarcinoma cells of the lung, cultured human umbilical vein endothelial cells (ECs) and extracellular matrices (ECM) prepared from confluent EC monolayers. Our results indicated that under static conditions platelets do not significantly increase tumor cell adhesion to either intact ECs or to exposed ECM. Conversely, the studies performed under flow conditions using the flat chamber perfusion system indicated that the presence of 2 × 105 pl/μl in the perfusate significantly increased the number of tumor cells adhered to ECM, and that this effect was shear rate dependent. The maximal values of tumor cell adhesion were obtained, in presence of platelets, at a shear rate of 1,300 sec-1. Furthermore, our results with ASA-treated platelets suggest that the role of platelets in enhancing tumor cell adhesion to ECM is independent of the activation of the platelet cyclooxygenase pathway.


1989 ◽  
Vol 482 (1) ◽  
pp. 1-12 ◽  
Author(s):  
R. Blanco ◽  
A. Arai ◽  
N. Grinberg ◽  
M. Yarmush ◽  
B.L. Karger

1998 ◽  
Vol 9 (7) ◽  
pp. 1803-1816 ◽  
Author(s):  
Michael C. Brown ◽  
Joseph A. Perrotta ◽  
Christopher E. Turner

We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.


2014 ◽  
Vol 24 ◽  
pp. S160
Author(s):  
C. Fabbri ◽  
C. Crisafulli ◽  
D. Gurwitz ◽  
J. Stingl ◽  
R. Calati ◽  
...  

2012 ◽  
Vol 12 (7) ◽  
pp. 926-936 ◽  
Author(s):  
Ning Zhang ◽  
Tilo Pompe ◽  
Ihsan Amin ◽  
Robert Luxenhofer ◽  
Carsten Werner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document