Highly efficient porous magnetic polydopamine/copper phosphate with three-dimensional hierarchical nanoflower morphology as a selective platform for recombinant proteins separation

2022 ◽  
Vol 209 ◽  
pp. 112149
Author(s):  
Mahsa Mohammad ◽  
Fatemeh Ahmadpoor ◽  
Seyed Abbas Shojaosadati ◽  
Ebrahim Vasheghani-Farahani
RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20446-20456
Author(s):  
Xi Ma ◽  
Ziwei Wang ◽  
Haoguo Yang ◽  
Yiqiu Zhang ◽  
Zizhong Zhang ◽  
...  

Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.


2021 ◽  
Vol 36 (1) ◽  
pp. 189-197
Author(s):  
Sen Wang ◽  
Xiao Wang ◽  
Xiao-yu Shi ◽  
Cai-xia Meng ◽  
Cheng-lin Sun ◽  
...  

2019 ◽  
Vol 7 (9) ◽  
pp. 4549-4560 ◽  
Author(s):  
Youdong Cheng ◽  
Linzhi Zhai ◽  
Yunpan Ying ◽  
Yuxiang Wang ◽  
Guoliang Liu ◽  
...  

A three-dimensional covalent organic framework filler with size-selective pores has been proven effective in boosting the membrane CO2 capture performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (49) ◽  
pp. 43116-43126 ◽  
Author(s):  
Yisi Liu ◽  
Wenzhang Li ◽  
Jie Li ◽  
Haibo Shen ◽  
Yaomin Li ◽  
...  

In this work, we demonstrate a facile strategy to synthesize a novel three-dimensional (3D) graphene aerogel-supported and graphene quantum dots-modified γ-MnOOH nanotubes as a highly efficient electrocatalyst.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 929 ◽  
Author(s):  
Sajjad Hussain ◽  
Kamran Akbar ◽  
Dhanasekaran Vikraman ◽  
Rana Afzal ◽  
Wooseok Song ◽  
...  

To find an effective alternative to scarce, high-cost noble platinum (Pt) electrocatalyst for hydrogen evolution reaction (HER), researchers are pursuing inexpensive and highly efficient materials as an electrocatalyst for large scale practical application. Layered transition metal dichalcogenides (TMDCs) are promising candidates for durable HER catalysts due to their cost-effective, highly active edges and Earth-abundant elements to replace Pt electrocatalysts. Herein, we design an active, stable earth-abundant TMDCs based catalyst, WS(1−x)Sex nanoparticles-decorated onto a 3D porous graphene/Ni foam. The WS(1−x)Sex/graphene/NF catalyst exhibits fast hydrogen evolution kinetics with a moderate overpotential of ~−93 mV to drive a current density of 10 mA cm−2, a small Tafel slope of ~51 mV dec−1, and a long cycling lifespan more than 20 h in 0.5 M sulfuric acid, which is much better than WS2/NF and WS2/graphene/NF catalysts. Our outcomes enabled a way to utilize the TMDCs decorated graphene and precious-metal-free electrocatalyst as mechanically robust and electrically conductive catalyst materials.


2017 ◽  
Vol 231 ◽  
pp. 51-57 ◽  
Author(s):  
Zhongping Chen ◽  
Jianfeng Ma ◽  
Ke Yang ◽  
Sheng Feng ◽  
Wensheng Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document