Two-dimensional manifold equations for multi-modal turbulent combustion: Nonpremixed combustion limit and scalar dissipation rates

2021 ◽  
Vol 231 ◽  
pp. 111475
Author(s):  
Alex G. Novoselov ◽  
Bruce A. Perry ◽  
Michael E. Mueller
2021 ◽  
Vol 183 (2) ◽  
Author(s):  
D. Benedetto ◽  
E. Caglioti ◽  
S. Caracciolo ◽  
M. D’Achille ◽  
G. Sicuro ◽  
...  

AbstractWe consider the assignment problem between two sets of N random points on a smooth, two-dimensional manifold $$\Omega $$ Ω of unit area. It is known that the average cost scales as $$E_{\Omega }(N)\sim {1}/{2\pi }\ln N$$ E Ω ( N ) ∼ 1 / 2 π ln N with a correction that is at most of order $$\sqrt{\ln N\ln \ln N}$$ ln N ln ln N . In this paper, we show that, within the linearization approximation of the field-theoretical formulation of the problem, the first $$\Omega $$ Ω -dependent correction is on the constant term, and can be exactly computed from the spectrum of the Laplace–Beltrami operator on $$\Omega $$ Ω . We perform the explicit calculation of this constant for various families of surfaces, and compare our predictions with extensive numerics.


Author(s):  
Scott Martin ◽  
Aleksandar Jemcov ◽  
Björn de Ruijter

Here the premixed Conditional Moment Closure (CMC) method is used to model the recent PIV and Raman turbulent, enclosed reacting methane jet data from DLR Stuttgart [1]. The experimental data has a rectangular test section at atmospheric pressure and temperature with a single inlet jet. A jet velocity of 90 m/s is used with an adiabatic flame temperature of 2,064 K. Contours of major species, temperature and velocities along with velocity rms values are provided. The conditional moment closure model has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes [2]. The simplified CMC model used here falls into the class of table lookup turbulent combustion models where the chemical kinetics are solved offline over a range of conditions and stored in a table that is accessed by the CFD code. Most table lookup models are based on the laminar 1-D flamelet equations, which assume the small scale turbulence does not affect the reaction rates, only the large scale turbulence has an effect on the reaction rates. The CMC model is derived from first principles to account for the effects of small scale turbulence on the reaction rates, as well as the effects of the large scale mixing, making it more versatile than other models. This is accomplished by conditioning the scalars with the reaction progress variable. By conditioning the scalars and accounting for the small scale mixing, the effects of turbulent fluctuations of the temperature on the reaction rates are more accurately modeled. The scalar dissipation is used to account for the effects of the small scale mixing on the reaction rates. The original premixed CMC model used a constant value of scalar dissipation, here the scalar dissipation is conditioned by the reaction progress variable. The steady RANS 3-D version of the open source CFD code OpenFOAM is used. Velocity, temperature and species are compared to the experimental data. Once validated, this CFD turbulent combustion model will have great utility for designing lean premixed gas turbine combustors.


2013 ◽  
Vol 79 (804) ◽  
pp. 1685-1693 ◽  
Author(s):  
Yosuke SUENAGA ◽  
Hideki YANAOKA ◽  
Michio KITANO ◽  
Daisuke MOMOTORI

2019 ◽  
Vol 37 (2) ◽  
pp. 2353-2361 ◽  
Author(s):  
Nilanjan Chakraborty ◽  
Daniel H. Wacks ◽  
Sebastian Ketterl ◽  
Markus Klein ◽  
Hong G. Im

Author(s):  
K. R. V. Manikantachari ◽  
Scott Martin ◽  
Ramees K. Rahman ◽  
Carlos Velez ◽  
Subith Vasu

Abstract A counterflow diffusion flame for supercritical CO2 combustion is investigated at various CO2 dilution levels and pressures by accounting for real gas effects into both thermal and transport properties. The UCF 1.1 24-species mechanism is used to account the chemistry. The nature of important nonpremixed combustion characteristics such as Prandtl number, thermal diffusivity, Lewis number, stoichiometric scalar dissipation rate, flame thickness, and Damköhler number are investigated with respect to CO2 dilution and pressure. The results show that the aforementioned parameters are influenced by both dilution and pressure; the dilution effect is more dominant. Further, the result shows that Prandtl number increases with CO2 dilution and at 90% CO2 dilution, the difference between the Prandtl number of the inlet jets and the flame is minimal. Also, the common assumption of unity Lewis number in the theory and modeling of nonpremixed combustion does not hold reasonable for sCO2 applications due to large difference of Lewis number across the flame and the Lewis number on the flame drop significantly with an increase in the CO2 dilution. An interesting relation between Lewis number and CO2 dilution is observed. The Lewis number of species drops by 15% when increasing the CO2 dilution by 30%. Increasing the CO2 dilution increases both the flow and chemical timescales; however, chemical timescale increases faster than the flow timescales. The magnitudes of the Damköhler number signify the need to consider finite rate chemistry for sCO2 applications. Further, the Damköhler numbers at 90% sCO2 dilution are very small; hence, laminar flamelet assumptions in turbulent combustion simulations are not physically correct for this application. Also, it is observed that the Damköhler number drops nonlinearly with increasing CO2 dilution in the oxidizer stream. This is a very important observation for the operation of sCO2 combustors. Further, the flame thickness is found to increase with CO2 dilution and reduce with pressure.


2015 ◽  
Vol 74 ◽  
pp. 32-35 ◽  
Author(s):  
V.A. Gani ◽  
A.E. Dmitriev ◽  
S.G. Rubin

Sign in / Sign up

Export Citation Format

Share Document