Hybrid beamforming NOMA for mmWave half-duplex UAV relay-assisted B5G/6G IoT networks

2021 ◽  
Vol 180 ◽  
pp. 232-242
Author(s):  
Jianhe Du ◽  
Yang Zhang ◽  
Yuanzhi Chen ◽  
Xingwang Li ◽  
Yuan Cheng ◽  
...  
2021 ◽  
Author(s):  
Chandan Kumar Sheemar ◽  
Christo Kurisummoottil Thomas ◽  
Dirk Slock

Full-Duplex (FD) communication can revolutionize wireless communications as it doubles spectral efficiency and offers numerous other advantages over a half-duplex (HD) system. In this paper, we present a novel and practical joint hybrid beamforming (HYBF) and combining scheme for millimeter-wave (mmWave) massive MIMO FD system for weighted sum-rate (WSR) maximization with multi-antenna HD uplink and downlink users with non-ideal hardware.<br>Moreover, we present a novel interference and self-interference (SI) aware optimal power allocation scheme for the optimal beamforming directions. The analog processing stage is assumed to be quantized, and both the unit-modulus and unconstrained cases are considered.<br>Moreover, compared to the traditional sum-power constraints, the proposed algorithm is designed under the joint sum-power and the practical per-antenna power constraints. To model the non-ideal hardware of a hybrid FD transceiver, we extend the traditional limited dynamic range (LDR) noise model to mmWave. Our HYBF design relies on alternating optimization based on the minorization-maximization method. <br>We investigate the maximum achievable gain of a hybrid FD system with different levels of the LDR noise variance and with different numbers of radio-frequency (RF) chains over a HD system. Simulation results show that the mmWave massive MIMO FD systems can significantly outperform the fully digital HD systems with only a few RF chains if the LDR noise generated from the limited number of RF chains available is low. If the LDR noise variance dominates, FD communication with HYBF results to be disadvantageous than a HD system. <br>


2021 ◽  
Author(s):  
Chandan Kumar Sheemar ◽  
Christo Kurisummoottil Thomas ◽  
Dirk Slock

Full-Duplex (FD) communication can revolutionize wireless communications as it doubles spectral efficiency and offers numerous other advantages over a half-duplex (HD) system. In this paper, we present a novel and practical joint hybrid beamforming (HYBF) and combining scheme for millimeter-wave (mmWave) massive MIMO FD system for weighted sum-rate (WSR) maximization with multi-antenna HD uplink and downlink users with non-ideal hardware.<br>Moreover, we present a novel interference and self-interference (SI) aware optimal power allocation scheme for the optimal beamforming directions. The analog processing stage is assumed to be quantized, and both the unit-modulus and unconstrained cases are considered.<br>Moreover, compared to the traditional sum-power constraints, the proposed algorithm is designed under the joint sum-power and the practical per-antenna power constraints. To model the non-ideal hardware of a hybrid FD transceiver, we extend the traditional limited dynamic range (LDR) noise model to mmWave. Our HYBF design relies on alternating optimization based on the minorization-maximization method. <br>We investigate the maximum achievable gain of a hybrid FD system with different levels of the LDR noise variance and with different numbers of radio-frequency (RF) chains over a HD system. Simulation results show that the mmWave massive MIMO FD systems can significantly outperform the fully digital HD systems with only a few RF chains if the LDR noise generated from the limited number of RF chains available is low. If the LDR noise variance dominates, FD communication with HYBF results to be disadvantageous than a HD system. <br>


Author(s):  
Kui Xu ◽  
Ming Zhang ◽  
Jie Liu ◽  
Nan Sha ◽  
Wei Xie ◽  
...  

Abstract In this paper, we design the simultaneous wireless information and power transfer (SWIPT) protocol for massive multi-input multi-output (mMIMO) system with non-linear energy-harvesting (EH) terminals. In this system, the base station (BS) serves a set of uplink fixed half-duplex (HD) terminals with non-linear energy harvester. Considering the non-linearity of practical energy-harvesting circuits, we adopt the realistic non-linear EH model rather than the idealistic linear EH model. The proposed SWIPT protocol can be divided into two phases. The first phase is designed for terminals EH and downlink training. A beam domain energy beamforming method is employed for the wireless power transmission. In the second phase, the BS forms the two-layer receive beamformers for the reception of signals transmitted by terminals. In order to improve the spectral efficiency (SE) of the system, the BS transmit power- and time-switching ratios are optimized. Simulation results show the superiority of the proposed beam-domain SWIPT protocol on SE performance compared with the conventional mMIMO SWIPT protocols.


2021 ◽  
pp. 101319
Author(s):  
Berna Özbek ◽  
Oğulcan Erdoğan ◽  
Sherif A. Busari ◽  
Jonathan Gonzalez

Sign in / Sign up

Export Citation Format

Share Document