First-principles calculation of the band structure, electronic states, and optical properties of Cr-doped ZnS double-wall nanotubes

2015 ◽  
Vol 101 ◽  
pp. 1-7 ◽  
Author(s):  
Yuhong Huang ◽  
Zongquan Zhang ◽  
Fei Ma ◽  
Paul K. Chu ◽  
Cuiping Dong ◽  
...  
2011 ◽  
Vol 213 ◽  
pp. 483-486
Author(s):  
Fang Gui ◽  
Shi Yun Zhou ◽  
Wan Jun Yan ◽  
Chun Hong Zhang ◽  
Xiao Tian Guo ◽  
...  

The electronic structure and optical properties of Fe1-xMnxSi2 have been studied using the first principle plane-wave pseudo-potential based on the density function theory. Substitutional doping is considered with Mn concentrations of x=0.0625, 0.125, 0.1875 and 0.25, respectively. The calculated results show that the volume of β-FeSi2 increase and the band gap increase with increasing of Mn.


Author(s):  
Hong Shen ◽  
Riyi Yang ◽  
Kun Xie ◽  
Zhiyuan Yu ◽  
Yuxiang Zheng ◽  
...  

The electronic structures and optical properties of novel 2D biphenylene and hydrogen-terminated nanoribbons of different widths which are cut from a layer of biphenylene were explored by first-principles calculation. The...


2020 ◽  
Vol 8 (2) ◽  
pp. 581-590 ◽  
Author(s):  
C. Y. Wu ◽  
L. Sun ◽  
J. C. Han ◽  
H. R. Gong

First-principles calculation and Boltzmann transport theory have been combined to comparatively investigate the band structures, phonon spectra, and thermoelectric properties of both β-BiSb and β-BiAs monolayers.


2016 ◽  
Vol 30 (30) ◽  
pp. 1650217 ◽  
Author(s):  
Sihao Xia ◽  
Lei Liu ◽  
Yike Kong ◽  
Honggang Wang ◽  
Meishan Wang

In order to investigate the influences of different Al constituents on Ga[Formula: see text]Al[Formula: see text]N nanowires, the formation energy, stability, band structure, densities of states and optical properties of Ga[Formula: see text]Al[Formula: see text]N nanowires with different Al constituents are calculated using first-principles plane-wave ultrasoft pseudopotential method. Results show that Ga[Formula: see text]Al[Formula: see text]N nanowires become more stable with increasing Al constituent. Bandgap of Ga[Formula: see text]Al[Formula: see text]N nanowires increases as the Al constituent increases but with a lower amplification compared with bulk Ga[Formula: see text]Al[Formula: see text]N. The peaks of static dielectric constants show a decreasing trend and move towards high-energy side as Al constituent increases. The absorption of Ga[Formula: see text]Al[Formula: see text]N nanowires shows an interesting phenomenon that it firstly increases and then decreases slightly as the Al constituent increases. Reflectivity of Ga[Formula: see text]Al[Formula: see text]N nanowires is much smaller than that of the bulk. The optical properties of Ga[Formula: see text]Al[Formula: see text]N nanowires show a blueshift effect as Al composition increases. According to these calculations, it is found that Ga[Formula: see text]Al[Formula: see text]N nanowires are appropriate to be applied into photoelectric detecting materials by adjusting the Al constituent of Ga[Formula: see text]Al[Formula: see text]N nanowires.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050035
Author(s):  
Xia Xu ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Zheng-Tang Liu ◽  
Qi-Jun Liu

In this paper, the structural, electronic, elastic, mechanical and optical properties of monoclinic [Formula: see text] are studied using the first-principles density functional theory (DFT). The calculated structural parameters are consistent with the experimental data. The elastic constants of [Formula: see text] structures are calculated, indicating that [Formula: see text] shows mechanical stability and elastic anisotropy. According to the [Formula: see text] and Poisson’s ratio, monoclinic [Formula: see text] shows a brittle manner. The energy band structure, density of states, charge transfers and bond populations are given. And the band structure shows that the material is a metal conductor. Moreover, the optical properties and optical anisotropy of [Formula: see text] are shown and analyzed.


Sign in / Sign up

Export Citation Format

Share Document