A study of relationship between dislocation configuration of nanocrack and brittle-ductile mode of fracture: Atomistic modeling

2020 ◽  
Vol 173 ◽  
pp. 109413 ◽  
Author(s):  
Li-Lin Huang ◽  
Ying-Jun Gao ◽  
Qian-Qian Deng ◽  
Zhe-Yuan Liu ◽  
Zhi-Rong Luo ◽  
...  
2011 ◽  
Vol 4 (3) ◽  
pp. 191
Author(s):  
Hiroo Shizuka ◽  
Koichi Okuda ◽  
Masayuki Nunobiki ◽  
Wei Li ◽  
Takanobu Inaoka

Author(s):  
Xiandong Zhou ◽  
Christoph Reimuth ◽  
Peter Stein ◽  
Bai-Xiang Xu

AbstractThis work presents a regularized eigenstrain formulation around the slip plane of dislocations and the resultant non-singular solutions for various dislocation configurations. Moreover, we derive the generalized Eshelby stress tensor of the configurational force theory in the context of the proposed dislocation model. Based on the non-singular finite element solutions and the generalized configurational force formulation, we calculate the driving force on dislocations of various configurations, including single edge/screw dislocation, dislocation loop, interaction between a vacancy dislocation loop and an edge dislocation, as well as a dislocation cluster. The non-singular solutions and the driving force results are well benchmarked for different cases. The proposed formulation and the numerical scheme can be applied to any general dislocation configuration with complex geometry and loading conditions.


Author(s):  
Jingming Shi ◽  
Emiliano Fonda ◽  
Silvana Botti ◽  
Miguel A. L. Marques ◽  
Toru Shinmei ◽  
...  

Metallization and dissociation are key transformations in diatomic molecules at high densities particularly significant for modeling giant planets. Using X-ray absorption spectroscopy and atomistic modeling, we demonstrate that in halogens,...


MRS Bulletin ◽  
2006 ◽  
Vol 31 (5) ◽  
pp. 410-418 ◽  
Author(s):  
Angelo Bongiorno ◽  
Clemens J. Först ◽  
Rajiv K. Kalia ◽  
Ju Li ◽  
Jochen Marschall ◽  
...  

AbstractThe broader context of this discussion, based on a workshop where materials technologists and computational scientists engaged in a dialogue, is an awareness that modeling and simulation techniques and computational capabilities may have matured sufficiently to provide heretofore unavailable insights into the complex microstructural evolution of materials in extreme environments.As an example, this article examines the study of ultrahigh-temperature oxidation-resistant ceramics, through the combination of atomistic simulation and selected experiments.We describe a strategy to investigate oxygen transport through a multi-oxide scale—the protective layer of ultrahigh-temperature ceramic composites ZrB2-SiC and HfB2-SiC—by combining first-principles and atomistic modeling and simulation with selected experiments.


Sign in / Sign up

Export Citation Format

Share Document