Compositional effects on stacking fault energies in Ni-based alloys using first-principles and atomistic simulations

2021 ◽  
Vol 197 ◽  
pp. 110618
Author(s):  
Liubin Xu ◽  
Luis Casillas-Trujillo ◽  
Yanfei Gao ◽  
Haixuan Xu
Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 364 ◽  
Author(s):  
Lili Liu ◽  
Liwan Chen ◽  
Youchang Jiang ◽  
Chenglin He ◽  
Gang Xu ◽  
...  

The volume versus temperature relations for Ni 3 Si and Ni 3 Ge are obtained by using the first principles calculations combined with the quasiharmonic approach. Based on the equilibrium volumes at temperature T, the temperature dependence of the elastic constants, generalized stacking fault energies and generalized planar fault energies of Ni 3 Si and Ni 3 Ge are investigated by first principles calculations. The elastic constants, antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies and twinning energy decrease with increasing temperature. The twinnability of Ni 3 Si and Ni 3 Ge are examined using the twinnability criteria. It is found that their twinnability decrease with increasing temperature. Furthermore, Ni 3 Si has better twinnability than Ni 3 Ge at different temperatures.


1999 ◽  
Vol 578 ◽  
Author(s):  
Satish I. Rao ◽  
Peter M. Hazzledine

AbstractMultilayered Cu-Ni has a peak yield strength four orders of magnitude higher than either Cu or Ni because the multitude of interfaces obstruct glissile dislocations. The barrier strengths of the interfaces may be traced to four mismatches across an interface: modulus, lattice parameter, chemical and slip geometry. This paper describes sample embedded atom method (EAM) simulations of dislocations crossing interfaces, designed to separate the effects of the four mismatches. The results confirm some classical calculations and emphasize the importance of three new effects (i) an interface-chemical effect in which dislocations are trapped by core spreading in the interface, (ii) a coherency-chemical effect caused by coherency strains changing effective stacking fault energies and (iii) a coherency-modulus effect in which coherency strains change elastic moduli (and hence the Koehler stress) significantly.


Vacuum ◽  
2020 ◽  
Vol 181 ◽  
pp. 109682 ◽  
Author(s):  
Wenchao Yang ◽  
Pengfei Qu ◽  
Jiachen Sun ◽  
Quanzhao Yue ◽  
Haijun Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document