scholarly journals A dual-head attention model for time series data imputation

2021 ◽  
Vol 189 ◽  
pp. 106377
Author(s):  
Yifan Zhang ◽  
Peter J. Thorburn
Hydrology ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 63 ◽  
Author(s):  
Benjamin Nelsen ◽  
D. Williams ◽  
Gustavious Williams ◽  
Candace Berrett

Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various interpolation methods or ad hoc approaches to data imputation. Since the analysis based on inaccurate data can lead to inaccurate conclusions, more accurate data imputation methods can provide accurate analysis. We present a spatial-temporal data imputation method using Empirical Mode Decomposition (EMD) based on spatial correlations. We call this method EMD-spatial data imputation or EMD-SDI. Though this method is applicable to other time-series data sets, here we demonstrate the method using temperature data. The EMD algorithm decomposes data into periodic components called intrinsic mode functions (IMF) and exactly reconstructs the original signal by summing these IMFs. EMD-SDI initially decomposes the data from the target station and other stations in the region into IMFs. EMD-SDI evaluates each IMF from the target station in turn and selects the IMF from other stations in the region with periodic behavior most correlated to target IMF. EMD-SDI then replaces a section of missing data in the target station IMF with the section from the most closely correlated IMF from the regional stations. We found that EMD-SDI selects the IMFs used for reconstruction from different stations throughout the region, not necessarily the station closest in the geographic sense. EMD-SDI accurately filled data gaps from 3 months to 5 years in length in our tests and favorably compares to a simple temporal method. EMD-SDI leverages regional correlation and the fact that different stations can be subject to different periodic behaviors. In addition to data imputation, the EMD-SDI method provides IMFs that can be used to better understand regional correlations and processes.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
E Afrifa‐Yamoah ◽  
U. A. Mueller ◽  
S. M. Taylor ◽  
A. J. Fisher

Author(s):  
Changchang Che ◽  
Huawei Wang ◽  
Xiaomei Ni ◽  
Qiang Fu

Accurate performance degradation prediction of aeroengines can ensure the safety and reliability of the aircraft. Based on the mass long time series data of multiple state parameters, a novel performance degradation prediction method based on attention model (AM) and support vector regression (SVR) is proposed in this article. The AM uses the attention mechanism between encoder and decoder to realize weight distribution of different source samples, so as to realize time series prediction of state parameters. The SVR model is used to mine the mapping relationship between multiple state parameters and performance degradation. The performance degradation prediction results can be achieved by putting the time series prediction results of multiple state parameters into the SVR model. The turbofan engine degradation simulation dataset carried out using commercial modular aero-propulsion system simulation (C-MAPSS) is used to verify the effectiveness of the proposed method. The results demonstrate that it can get accurate time series prediction and performance degradation analysis results. Compared with other methods, the proposed attention model and support vector regression (AM-SVR) model has lower prediction error and higher stability when dealing with noised samples.


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Author(s):  
Rizki Rahma Kusumadewi ◽  
Wahyu Widayat

Exchange rate is one tool to measure a country’s economic conditions. The growth of a stable currency value indicates that the country has a relatively good economic conditions or stable. This study has the purpose to analyze the factors that affect the exchange rate of the Indonesian Rupiah against the United States Dollar in the period of 2000-2013. The data used in this study is a secondary data which are time series data, made up of exports, imports, inflation, the BI rate, Gross Domestic Product (GDP), and the money supply (M1) in the quarter base, from first quarter on 2000 to fourth quarter on 2013. Regression model time series data used the ARCH-GARCH with ARCH model selection indicates that the variables that significantly influence the exchange rate are exports, inflation, the central bank rate and the money supply (M1). Whereas import and GDP did not give any influence.


Sign in / Sign up

Export Citation Format

Share Document