scholarly journals Missing data imputation of high‐resolution temporal climate time series data

2020 ◽  
Vol 27 (1) ◽  
Author(s):  
E Afrifa‐Yamoah ◽  
U. A. Mueller ◽  
S. M. Taylor ◽  
A. J. Fisher
Author(s):  
Andrew Q. Philips

In cross-sectional time-series data with a dichotomous dependent variable, failing to account for duration dependence when it exists can lead to faulty inferences. A common solution is to include duration dummies, polynomials, or splines to proxy for duration dependence. Because creating these is not easy for the common practitioner, I introduce a new command, mkduration, that is a straightforward way to generate a duration variable for binary cross-sectional time-series data in Stata. mkduration can handle various forms of missing data and allows the duration variable to easily be turned into common parametric and nonparametric approximations.


Hydrology ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 63 ◽  
Author(s):  
Benjamin Nelsen ◽  
D. Williams ◽  
Gustavious Williams ◽  
Candace Berrett

Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various interpolation methods or ad hoc approaches to data imputation. Since the analysis based on inaccurate data can lead to inaccurate conclusions, more accurate data imputation methods can provide accurate analysis. We present a spatial-temporal data imputation method using Empirical Mode Decomposition (EMD) based on spatial correlations. We call this method EMD-spatial data imputation or EMD-SDI. Though this method is applicable to other time-series data sets, here we demonstrate the method using temperature data. The EMD algorithm decomposes data into periodic components called intrinsic mode functions (IMF) and exactly reconstructs the original signal by summing these IMFs. EMD-SDI initially decomposes the data from the target station and other stations in the region into IMFs. EMD-SDI evaluates each IMF from the target station in turn and selects the IMF from other stations in the region with periodic behavior most correlated to target IMF. EMD-SDI then replaces a section of missing data in the target station IMF with the section from the most closely correlated IMF from the regional stations. We found that EMD-SDI selects the IMFs used for reconstruction from different stations throughout the region, not necessarily the station closest in the geographic sense. EMD-SDI accurately filled data gaps from 3 months to 5 years in length in our tests and favorably compares to a simple temporal method. EMD-SDI leverages regional correlation and the fact that different stations can be subject to different periodic behaviors. In addition to data imputation, the EMD-SDI method provides IMFs that can be used to better understand regional correlations and processes.


Author(s):  
Alkiviadis Kyrtsoglou ◽  
Dimara Asimina ◽  
Dimitrios Triantafyllidis ◽  
Stelios Krinidis ◽  
Konstantinos Kitsikoudis ◽  
...  

2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


2010 ◽  
Vol 2 (2) ◽  
pp. 388-415 ◽  
Author(s):  
Willem J.D. Van Leeuwen ◽  
Jennifer E. Davison ◽  
Grant M. Casady ◽  
Stuart E. Marsh

2021 ◽  
Vol 189 ◽  
pp. 106377
Author(s):  
Yifan Zhang ◽  
Peter J. Thorburn

2008 ◽  
Vol 4 (S259) ◽  
pp. 413-414
Author(s):  
Catrina M. Hamilton ◽  
C. M. Johns-Krull ◽  
R. Mundt ◽  
W. Herbst ◽  
J. N. Winn

AbstractWe have obtained high resolution spectra of the pre-main sequence binary system KH 15D (V582 Mon) while the star is fully visible, fully occulted, and during several ingress and egress events over the course of five contiguous observing seasons. The Hα line profile is a standard probe of the magnetospheric accretion flows on young stars such as KH 15D. We use these time series data to map out the size of the magnetosphere and find that it changes size from one observing season to the next.


Sign in / Sign up

Export Citation Format

Share Document