Scaffold-based novel SHP2 allosteric inhibitors design using Receptor-Ligand pharmacophore model, virtual screening and molecular dynamics

2018 ◽  
Vol 73 ◽  
pp. 179-188 ◽  
Author(s):  
Wen-Yan Jin ◽  
Ying Ma ◽  
Wei-Ya Li ◽  
Hong-Lian Li ◽  
Run-Ling Wang
Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 237 ◽  
Author(s):  
Chunqiong Li ◽  
Xuewen Zhang ◽  
Na Zhang ◽  
Yue Zhou ◽  
Guohui Sun ◽  
...  

Casein kinase II (CK2) is considered as an attractive cancer therapeutic target, and recent efforts have been made to develop its ATP-competitive inhibitors. However, achieving selectivity with respect to related kinases remains challenging due to the highly conserved ATP-binding pocket of kinases. Allosteric inhibitors, by targeting the much more diversified allosteric site relative to the highly conserved ATP-binding pocket, might be a promising strategy with the enhanced selectivity and reduced toxicity than ATP-competitive inhibitors. The previous studies have highlighted the traditional serendipitousity of discovering allosteric inhibitors owing to the complicate allosteric modulation. In this current study, we identified the novel allosteric inhibitors of CK2α by combing structure-based virtual screening and biological evaluation methods. The structure-based pharmacophore model was built based on the crystal structure of CK2α-compound 15 complex. The ChemBridge fragment library was searched by evaluating the fit values of these molecules with the optimized pharmacophore model, as well as the binding affinity of the CK2α-ligand complexes predicted by Alloscore web server. Six hits forming the holistic interaction mechanism with the αD pocket were retained after pharmacophore- and Alloscore-based screening for biological test. Compound 3 was found to be the most potent non-ATP competitive CK2α inhibitor (IC50 = 13.0 μM) with the anti-proliferative activity on A549 cancer cells (IC50 = 23.1 μM). Our results provide new clues for further development of CK2 allosteric inhibitors as anti-cancer hits.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1245 ◽  
Author(s):  
Kelton L. B. dos Santos ◽  
Jorddy N. Cruz ◽  
Luciane B. Silva ◽  
Ryan S. Ramos ◽  
Moysés F. A. Neto ◽  
...  

Adenosine Receptor Type 2A (A2AAR) plays a role in important processes, such as anti-inflammatory ones. In this way, the present work aimed to search for compounds by pharmacophore-based virtual screening. The pharmacokinetic/toxicological profiles of the compounds, as well as a robust QSAR, predicted the binding modes via molecular docking. Finally, we used molecular dynamics to investigate the stability of interactions from ligand-A2AAR. For the search for A2AAR agonists, the UK-432097 and a set of 20 compounds available in the BindingDB database were studied. These compounds were used to generate pharmacophore models. Molecular properties were used for construction of the QSAR model by multiple linear regression for the prediction of biological activity. The best pharmacophore model was used by searching for commercial compounds in databases and the resulting compounds from the pharmacophore-based virtual screening were applied to the QSAR. Two compounds had promising activity due to their satisfactory pharmacokinetic/toxicological profiles and predictions via QSAR (Diverset 10002403 pEC50 = 7.54407; ZINC04257548 pEC50 = 7.38310). Moreover, they had satisfactory docking and molecular dynamics results compared to those obtained for Regadenoson (Lexiscan®), used as the positive control. These compounds can be used in biological assays (in vitro and in vivo) in order to confirm the potential activity agonist to A2AAR.


2021 ◽  
Author(s):  
Satyajit Beura ◽  
Prabhakar Chetti

To design a new therapeutic agent for Hematopoietic Prostaglandin D2 synthase (hPGDS), a set of 60 molecules with different molecular scaffolds were (range of pIC50 values are from 8.301 to 3.932) considered to create a pharmacophore model. Further, identification of potential hPGDS inhibitors were carried out by using virtual screening with different databases (from 15,74,182 molecules). The Molecular screening was performed using different sequential methods right from Pharmacophore based virtual screening, molecular docking, MM-GBSAstudies, ADME property analysis and molecular dynamics simulations using Maestro11.9 software. Based on the best pharmacophore model (ADRR_1), the resultant set of 18,492 molecules were screened. The preliminarily screened molecules were subjected to molecular docking (PDB_ID: 2CVD) methods. A set of 27 molecules was screened from the resultant molecular docking outcomes (360 molecules) based on binding free energy (ΔGbind) and Lipinskis rule of five. Out of 27 molecules, 4 were selected visual data analysis and further subjected to molecular dynamics (MD) simulation study. Outcomes of the present study conclude with three new proposed molecules (SP1, SP2 and SP10) which show a good range of interaction with human hPGDS enzyme in comparison to the marketed compounds i.e., HQL-79, TFC-007, HPGDS inhibitor I and TAS-204.


2018 ◽  
Vol 24 (8) ◽  
Author(s):  
Janay Stefany Carneiro Araujo ◽  
Bruno Cruz de Souza ◽  
David Bacelar Costa Junior ◽  
Larissa de Mattos Oliveira ◽  
Isis Bugia Santana ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 29
Author(s):  
Lianxiang Luo ◽  
Ai Zhong ◽  
Qu Wang ◽  
Tongyu Zheng

Background: In the past decade, several antibodies directed against the PD-1/PD-L1 interaction have been approved. However, therapeutic antibodies also exhibit some shortcomings. Using small molecules to regulate the PD-1/PD-L1 pathway may be another way to mobilize the immune system to fight cancer. Method: 52,765 marine natural products were screened against PD-L1(PDBID: 6R3K). To identify natural compounds, a structure-based pharmacophore model was generated, following by virtual screening and molecular docking. Then, the absorption, distribution, metabolism, and excretion (ADME) test was carried out to select the most suitable compounds. Finally, molecular dynamics simulation was also performed to validate the binding property of the top compound. Results: Initially, 13 small marine molecules were screened based on the pharmacophore model. Then, two compounds were selected for further evaluation based on the molecular docking scores. After ADME and toxicity studies, molecule 51320 was selected for further verification. By molecular dynamics analysis, molecule 51320 maintains a stable conformation with the target protein, so it has the chance to become an inhibitor of PD-L1. Conclusions: Through structure-based pharmacophore modeling, virtual screening, molecular docking, ADMET approaches, and molecular dynamics (MD) simulation, the marine natural compound 51320 can be used as a small molecule inhibitor of PD-L1.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lirui Lin ◽  
Kai Lin ◽  
Xiaodong Wu ◽  
Jia Liu ◽  
Yinwei Cheng ◽  
...  

Marine nature products are unique compounds that are produced by the marine environment including plants, animals, and microorganisms. The wide diversity of marine natural products have great potential and are versatile in terms of drug discovery. In this paper, we use state-of-the-art computational methods to discover inhibitors from marine natural products to block the function of Fascin, an overexpressed protein in various cancers. First, virtual screening (pharmacophore model and molecular docking) was carried out based on a marine natural products database (12015 molecules) and provided eighteen molecules that could potentially inhibit the function of Fascin. Next, molecular mechanics generalized Born surface area (MM/GBSA) calculations were conducted and indicated that four molecules have higher binding affinities than the inhibitor NP-G2-029, which was validated experimentally. ADMET analyses of pharmacokinetics demonstrated that one of the four molecules does not match the criterion. Finally, ligand Gaussian accelerated molecular dynamics (LiGaMD) simulations were carried out to validate the three inhibitors binding to Fascin stably. In addition, dynamic interactions between protein and ligands were analyzed systematically. Our study will accelerate the development of the cancer drugs targeting Fascin.


Sign in / Sign up

Export Citation Format

Share Document