New naphthalene derivative for cost-effective AChE inhibitors for Alzheimer’s treatment: In silico identification, in vitro and in vivo validation

2020 ◽  
Vol 89 ◽  
pp. 107378
Author(s):  
Fareeha Anwar ◽  
Uzma Saleem ◽  
Bashir Ahmad ◽  
Muhammad Ashraf ◽  
Atta Ur Rehman ◽  
...  
2011 ◽  
Vol 17 (12) ◽  
pp. 3063-3073 ◽  
Author(s):  
Amit Nargotra ◽  
Sujata Sharma ◽  
Mohd Iqbal Alam ◽  
Zabeer Ahmed ◽  
Asha Bhagat ◽  
...  

2018 ◽  
Vol 125 ◽  
pp. 39-53 ◽  
Author(s):  
Rudradip Pattanayak ◽  
Atish Barua ◽  
Amlan Das ◽  
Tanima Chatterjee ◽  
Adrija Pathak ◽  
...  

2013 ◽  
Vol 130 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Aurélie Christ ◽  
Ira Maegele ◽  
Nati Ha ◽  
Hong Ha Nguyen ◽  
Martin D. Crespi ◽  
...  

2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Aveek Samanta ◽  
Tilak Raj Maity ◽  
Sudip Das ◽  
Animesh Kumar Datta ◽  
Siraj Datta

Abstract Background Etoposide is one of the most potential anti-cancerous drugs that targets topoisomerase II (topoII) and inhibits its activity by ligation with the DNA molecule. Results In silico study confirmed that the etoposide-binding sites of topoII are conserved among the plants and human. The efficacy of the drug on plant system was initially assessed using germinated grass pea (Lathyrus sativus L.) seedlings (in vivo) in relation to radicle length and mitotic index. The callus system (in vitro) was also used to elucidate the effect of etoposide on callus growth kinetics. Furthermore, it was observed that etoposide able to inhibit the division of polyploid cells induced by colchicine treatment (0.5%, 8 h). To determine the molecular interaction, topoII was isolated from young grass pea leaves using polyethylene glycol fractionation and ammonium sulphate precipitation followed by column chromatography on CM-Sephadex (C-25). The plasmid linearization assays by isolated plant topoII in the presence of etoposide significantly revealed the functional similarity of plants and human topoII. Results indicated that the effect of etoposide on plant topoII is significant. Conclusions This study may pave the way to develop a plant-based assay system for screening the topoisomerase targeted anti-cancerous drugs, as it is convenient and cost-effective.


2014 ◽  
Vol 86 (5) ◽  
pp. 593-608 ◽  
Author(s):  
Ashley J. Parks ◽  
Michael P. Pollastri ◽  
Mark E. Hahn ◽  
Elizabeth A. Stanford ◽  
Olga Novikov ◽  
...  

2016 ◽  
Vol 64 (2) ◽  
pp. S735-S736
Author(s):  
P.J. Giraudi ◽  
S.E. Gambaro ◽  
C.M. Chackelevicius ◽  
M. Giuricin ◽  
L.S. Crocè ◽  
...  

Author(s):  
Pankaj Jain ◽  
Amit Joshi ◽  
Nahid Akhtar ◽  
Sunil Krishnan ◽  
Vikas Kaushik

Abstract Background Canine circovirus is a deadly pathogen of dogs and causes vasculitis and hemorrhagic enteritis. It causes lethal gastroenteritis in pigs, fox, and dogs. Canine circovirus genome contains two main (and opposite) transcription units which encode two open reading frames (ORFs), a replicase-associated protein (Rep) and the capsid (Cap) protein. The replicase protein and capsid protein consist of 303 amino acids and 270 amino acids respectively. Several immuno-informatics methods such as epitope screening, molecular docking, and molecular-dynamics simulations were used to craft peptide-based vaccine construct against canine circovirus. Results The vaccine construct was designed by joining the selected epitopes with adjuvants by suitable linker. The cloning and expression of the vaccine construct was also performed using in silico methods. Screening of epitopes was conducted by NetMHC server that uses ANN (Artificial neural networking) algorithm. These methods are fast and cost-effective for screening epitopes that can interact with dog leukocyte antigens (DLA) and initiate an immune response. Overall, 5 epitopes, YQHLPPFRF, YIRAKWINW, ALYRRLTLI, HLQGFVNLK, and GTMNFVARR, were selected and used to design a vaccine construct. The molecular docking and molecular dynamics simulation studies show that these epitopes can bind with DLA molecules with stability. The codon adaptation and in silico cloning studies show that the vaccine can be expressed by Escherichia coli K12 strain. Conclusion The results suggest that the vaccine construct can be useful in preventing the dogs from canine circovirus infections. However, the results need further validation by performing other in vitro and in vivo experiments.


Sign in / Sign up

Export Citation Format

Share Document