scholarly journals In Silico Identification of an Aryl Hydrocarbon Receptor Antagonist with Biological Activity In Vitro and In Vivo

2014 ◽  
Vol 86 (5) ◽  
pp. 593-608 ◽  
Author(s):  
Ashley J. Parks ◽  
Michael P. Pollastri ◽  
Mark E. Hahn ◽  
Elizabeth A. Stanford ◽  
Olga Novikov ◽  
...  
2011 ◽  
Vol 17 (12) ◽  
pp. 3063-3073 ◽  
Author(s):  
Amit Nargotra ◽  
Sujata Sharma ◽  
Mohd Iqbal Alam ◽  
Zabeer Ahmed ◽  
Asha Bhagat ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 463 ◽  
Author(s):  
Wei-Min Chung ◽  
Yen-Ping Ho ◽  
Wei-Chun Chang ◽  
Yuan-Chang Dai ◽  
Lumin Chen ◽  
...  

Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies and presents chemoresistance after chemotherapy treatment. Androgen receptor (AR) has been known to participate in proliferation. Yet the mechanisms of the resistance of this drug and its linkage to the AR remains unclear. Methods: To elucidate AR-related paclitaxel sensitivity, co-IP, luciferase reporter assay and ChIP assay were performed to identify that AR direct-regulated ABCG2 expression under paclitaxel treatment. IHC staining by AR antibody presented higher AR expression in serous-type patients than other types. AR degradation enhancer (ASC-J9) was used to examine paclitaxel-associated and paclitaxel-resistant cytotoxicity in vitro and in vivo. Results: We found AR/aryl hydrocarbon receptor (AhR)-mediates ABCG2 expression and leads to a change in paclitaxel cytotoxicity/sensitivity in EOC serous subtype cell lines. Molecular mechanism study showed that paclitaxel activated AR transactivity and bound to alternative ARE in the ABCG2 proximal promoter region. To identify AR as a potential therapeutic target, the ASC-J9 was used to re-sensitize paclitaxel-resistant EOC tumors upon paclitaxel treatment in vitro and in vivo. Conclusion: The results demonstrated that activation of AR transactivity beyond the androgen-associated biological effect. This novel AR mechanism explains that degradation of AR is the most effective therapeutic strategy for treating AR-positive EOC serous subtype.


2018 ◽  
Vol 138 (5) ◽  
pp. S179
Author(s):  
H.C. Hawerkamp ◽  
A. Kislat ◽  
P. Gerber ◽  
M. Pollet ◽  
A.A. Soshilov ◽  
...  

2014 ◽  
Vol 42 (10) ◽  
pp. 1690-1697 ◽  
Author(s):  
Kazuhiro Shiizaki ◽  
Masanobu Kawanishi ◽  
Takashi Yagi

Author(s):  
Rahwa Taddese ◽  
Rian Roelofs ◽  
Derk Draper ◽  
Xinqun Wu ◽  
Shaoguang Wu ◽  
...  

ObjectiveThe opportunistic pathogen Streptococcus gallolyticus is one of the few intestinal bacteria that has been consistently linked to colorectal cancer (CRC). This study aimed to identify novel S. gallolyticus-induced pathways in colon epithelial cells that could further explain how S. gallolyticus contributes to CRC development.Design and ResultsTranscription profiling of in vitro cultured CRC cells that were exposed to S. gallolyticus revealed the specific induction of oxidoreductase pathways. Most prominently, CYP1A and ALDH1 genes that encode phase I biotransformation enzymes were responsible for the detoxification or bio-activation of toxic compounds. A common feature is that these enzymes are induced through the Aryl hydrocarbon receptor (AhR). Using the specific inhibitor CH223191, we showed that the induction of CYP1A was dependent on the AhR both in vitro using multiple CRC cell lines as in vivo using wild-type C57bl6 mice colonized with S. gallolyticus. Furthermore, we showed that CYP1 could also be induced by other intestinal bacteria and that a yet unidentified diffusible factor from the S. galloltyicus secretome (SGS) induces CYP1A enzyme activity in an AhR-dependent manner. Importantly, priming CRC cells with SGS increased the DNA damaging effect of the polycyclic aromatic hydrocarbon 3-methylcholanthrene.ConclusionThis study shows that gut bacteria have the potential to modulate the expression of biotransformation pathways in colonic epithelial cells in an AhR-dependent manner. This offers a novel theory on the contribution of intestinal bacteria to the etiology of CRC by modifying the capacity of intestinal epithelial or (pre-)cancerous cells to (de)toxify dietary components, which could alter intestinal susceptibility to DNA damaging events.


2000 ◽  
Vol 167 (1) ◽  
pp. 183-195 ◽  
Author(s):  
SU Singh ◽  
RF Casper ◽  
PC Fritz ◽  
B Sukhu ◽  
B Ganss ◽  
...  

Aryl hydrocarbon receptor (AhR) ligands are environmental contaminants found in cigarette smoke and other sources of air pollution. The prototypical compound is TCDD (2,3,7, 8-tetrachlorodibenzo-p-dioxin), also known as dioxin. There is an increasing body of knowledge linking cigarette smoking to osteoporosis and periodontal disease, but the direct effects of smoke-associated aryl hydrocarbons on bone are not well understood. Through the use of resveratrol (3,5,4'-trihydroxystilbene), a plant antifungal compound that we have recently demonstrated to be a pure AhR antagonist, we have investigated the effects of TCDD on osteogenesis. It was postulated that TCDD would inhibit osteogenesis in bone-forming cultures and that this inhibition would be antagonized by resveratrol. We employed the chicken periosteal osteogenesis (CPO) model, which has been shown to form bone in vitro in a pattern morphologically and biochemically similar to that seen in vivo, as well as a rat stromal cell bone nodule formation model. In the CPO model, alkaline phosphatase (AP) activity was reduced by up to 50% (P<0.01 vs control) in the presence of 10(-9) M TCDD and these effects were reversed by 10(-6) M resveratrol (P<0.05 vs TCDD alone). TCDD-mediated inhibition of osteogenesis was restricted primarily to the osteoblastic differentiation phase (days 0-2) as later addition did not appear to have any effects. Message levels for important bone-associated proteins (in the CPO model) such as collagen type I, osteopontin, bone sialoprotein and AP were inhibited by TCDD, an effect that was antagonized by resveratrol. Similar findings were obtained using the rat stromal bone cell line. TCDD (at concentrations as low as 10(-10)M) caused an approximately 33% reduction in AP activity, which was abrogated by 3. 5x10(-7) M resveratrol. TCDD also induced a marked reduction in mineralization ( approximately 75%) which was completely antagonized by resveratrol. These data suggest that AhR ligands inhibit osteogenesis probably through inhibition of osteodifferentiation and that this effect can be antagonized by resveratrol. Since high levels of AhR ligands are found in cigarette smoke, and further since smoking is an important risk factor in both osteoporosis and periodontal disease, it may be postulated that AhR ligands are the component of cigarette smoke linking smoking to osteoporosis and periodontal disease. If so, resveratrol could prove to be a promising preventive or therapeutic agent for smoking-related bone loss.


Sign in / Sign up

Export Citation Format

Share Document