Transcription factors and chaperone proteins play a role in launching a faster response to heat stress and aggregation

Author(s):  
Sushmita Pal ◽  
Rati Sharma
Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 668
Author(s):  
Amit Kumar Singh ◽  
Shanmuhapreya Dhanapal ◽  
Alin Finkelshtein ◽  
Daniel A. Chamovitz

In nature, plants are exposed to several environmental stresses that can be continuous or recurring. Continuous stress can be lethal, but stress after priming can increase the tolerance of a plant to better prepare for future stresses. Reports have suggested that transcription factors are involved in stress memory after recurrent stress; however, less is known about the factors that regulate the resetting of stress memory. Here, we uncovered a role for Constitutive Photomorphogenesis 5A (CSN5A) in the regulation of stress memory for resetting transcriptional memory genes (APX2 and HSP22) and H3K4me3 following recurrent heat stress. Furthermore, CSN5A is also required for the deposition of H3K4me3 following recurrent heat stress. Thus, CSN5A plays an important role in the regulation of histone methylation and transcriptional stress memory after recurrent heat stress.


1993 ◽  
Vol 102 (4) ◽  
pp. 1355-1356 ◽  
Author(s):  
K. D. Scharf ◽  
S. Rose ◽  
J. Thierfelder ◽  
L. Nover

2019 ◽  
Author(s):  
Sonia Balyan ◽  
Sombir Rao ◽  
Sarita Jha ◽  
Chandni Bansal ◽  
Jaishri Rubina Das ◽  
...  

AbstractThe footprint of tomato cultivation, a cool region crop that exhibits heat stress (HS) sensitivity, is increasing in the tropics/sub-tropics. Knowledge of novel regulatory hot-spots from varieties growing in the Indian sub-continent climatic zones could be vital for developing HS-resilient crops. Comparative transcriptome-wide signatures of a tolerant (CLN1621L) and sensitive (CA4) cultivar-pair short-listed from a pool of varieties exhibiting variable thermo-sensitivity using physiological, survival and yield-related traits revealed redundant to cultivar-specific HS-regulation with more up-regulated genes for CLN1621L than CA4. The anatgonisiticly-expressing genes include enzymes; have roles in plant defense and response to different abiotic stresses. Functional characterization of three antagonistic genes by overexpression and TRV-VIGS silencing established Solyc09g014280 (Acylsugar acyltransferase) and Solyc07g056570 (Notabilis), that are up-regulated in tolerant cultivar, as positive regulators of HS-tolerance and Solyc03g020030 (Pin-II proteinase inhibitor), that is down-regulated in CLN1621L, as negative regulator of thermotolerance. Transcriptional assessment of promoters of these genes by SNPs in stress-responsive cis-elements and promoter swapping experiments in opposite cultivar background showed inherent cultivar-specific orchestration of transcription factors in regulating transcription. Moreover, overexpression of three ethylene response transcription factors (ERF.C1/F4/F5) also improved HS-tolerance in tomato. This study identifies several novel HS-tolerance genes and provides proof of their utility in tomato-thermotolerance.HighlightNovel heat stress regulatory pathways uncovered by comparative transcriptome profiling between contrasting tomato cultivars from Indian sub-continent for improving thermotolerance. (20/30)


1996 ◽  
Vol 1 (4) ◽  
pp. 215 ◽  
Author(s):  
Lutz Nover ◽  
Klaus-Dieter Scharf ◽  
Dominique Gagliardi ◽  
Philipe Vergne ◽  
Eva Czarnecka-Verner ◽  
...  

2017 ◽  
Vol 39 (3) ◽  
Author(s):  
Xiao-dong Li ◽  
Xiao-li Wang ◽  
Yi-Ming Cai ◽  
Jia-hai Wu ◽  
Ben-tian Mo ◽  
...  

2007 ◽  
Vol 12 (10) ◽  
pp. 452-457 ◽  
Author(s):  
Pascal von Koskull-Döring ◽  
Klaus-Dieter Scharf ◽  
Lutz Nover

Sign in / Sign up

Export Citation Format

Share Document