heat stress transcription factors
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
Vol 23 (1) ◽  
pp. 572
Author(s):  
Chengpeng Wang ◽  
Yunzhuan Zhou ◽  
Xi Yang ◽  
Bing Zhang ◽  
Fuxiang Xu ◽  
...  

Heat stress severely affects the annual agricultural production. Heat stress transcription factors (HSFs) represent a critical regulatory juncture in the heat stress response (HSR) of plants. The HsfA1-dependent pathway has been explored well, but the regulatory mechanism of the HsfA1-independent pathway is still under-investigated. In the present research, HsfA4, an important gene of the HsfA1-independent pathway, was isolated from lilies (Lilium longiflorum) using the RACE method, which encodes 435 amino acids. LlHsfA4 contains a typical domain of HSFs and belongs to the HSF A4 family, according to homology comparisons and phylogenetic analysis. LlHsfA4 was mainly expressed in leaves and was induced by heat stress and H2O2 using qRT-PCR and GUS staining in transgenic Arabidopsis. LlHsfA4 had transactivation activity and was located in the nucleus and cytoplasm through a yeast one hybrid system and through transient expression in lily protoplasts. Over expressing LlHsfA4 in Arabidopsis enhanced its basic thermotolerance, but acquired thermotolerance was not achieved. Further research found that heat stress could increase H2O2 content in lily leaves and reduced H2O2 accumulation in transgenic plants, which was consistent with the up-regulation of HSR downstream genes such as Heat stress proteins (HSPs), Galactinol synthase1 (GolS1), WRKY DNA binding protein 30 (WRKY30), Zinc finger of Arabidopsis thaliana 6 (ZAT6) and the ROS-scavenging enzyme Ascorbate peroxidase 2 (APX2). In conclusion, these results indicate that LlHsfA4 plays important roles in heat stress response through regulating the ROS metabolism in lilies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sushmita Seni ◽  
Satinder Kaur ◽  
Palvi Malik ◽  
Inderjit Singh Yadav ◽  
Parul Sirohi ◽  
...  

AbstractWheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the present work was planned to study the total transcriptome profile of heat stress-tolerant Ae. speltoides accession pau3809 (AS3809) and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74 K, 68 K, and 76 K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs having the highest FPKM value were identified in the AS3809 transcriptome data, while six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFB2b, and HSFC1b, were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in AS3809 as evident from their comparative higher expression under heat stress.


2021 ◽  
Author(s):  
Sushmita Seni ◽  
Satinder Kaur ◽  
Palvi Malik ◽  
Inderjit Singh Yadav ◽  
Parul Sirohi ◽  
...  

Abstract Wheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the objective of the present work was to study the total transcriptome profile of Ae. speltoides accession pau3809 and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74K, 68K, and 76K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs with the highest FPKM value in the Ae. speltoides transcriptome data were selected and six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFC1b, and HSFB2b were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in Ae. speltoides as evident from their comparative higher expression under heat stress.


2020 ◽  
Vol 11 ◽  
Author(s):  
Marine Josephine Paupière ◽  
Yury Tikunov ◽  
Enrico Schleiff ◽  
Arnaud Bovy ◽  
Sotirios Fragkostefanakis

Plants respond to high temperatures with global changes of the transcriptome, proteome, and metabolome. Heat stress transcription factors (Hsfs) are the core regulators of transcriptome responses as they control the reprogramming of expression of hundreds of genes. The thermotolerance-related function of Hsfs is mainly based on the regulation of many heat shock proteins (HSPs). Instead, the Hsf-dependent reprogramming of metabolic pathways and their contribution to thermotolerance are not well described. In tomato (Solanum lycopersicum), manipulation of HsfB1, either by suppression or overexpression (OE) leads to enhanced thermotolerance and coincides with distinct profile of metabolic routes based on a metabolome profiling of wild-type (WT) and HsfB1 transgenic plants. Leaves of HsfB1 knock-down plants show an accumulation of metabolites with a positive effect on thermotolerance such as the sugars sucrose and glucose and the polyamine putrescine. OE of HsfB1 leads to the accumulation of products of the phenylpropanoid and flavonoid pathways, including several caffeoyl quinic acid isomers. The latter is due to the enhanced transcription of genes coding key enzymes in both pathways, in some cases in both non-stressed and stressed plants. Our results show that beyond the control of the expression of Hsfs and HSPs, HsfB1 has a wider activity range by regulating important metabolic pathways providing an important link between stress response and physiological tomato development.


2019 ◽  
Vol 30 (1) ◽  
pp. 7-9
Author(s):  
E. D. Arizala-Quinto ◽  
G. Viteri ◽  
F.M. Idrovo-Espín

Plant heat stress transcription factors (HSFs) are involved in the response to heat. In Arabidopsis thaliana the HSFs genes are completely identified, however there was no information available about these genes in Vasconcellea pubescens (Chamburo) until now. In this preliminary work we describe the VPHSFB1 gene of V. pubescens (gene expression evaluated by RT-PCR and the partial sequence) that was induced by the increment of temperature. From our results, VPHSFB1 could be used as a heat response marker gene in tropical species. Key words: Caricaceae, gene expression, heat.


2019 ◽  
Vol 13 ◽  
pp. 117793221882136 ◽  
Author(s):  
Jannik Berz ◽  
Stefan Simm ◽  
Sebastian Schuster ◽  
Klaus-Dieter Scharf ◽  
Enrico Schleiff ◽  
...  

Heat stress transcription factors (HSFs) regulate transcriptional response to a large number of environmental influences, such as temperature fluctuations and chemical compound applications. Plant HSFs represent a large and diverse gene family. The HSF members vary substantially both in gene expression patterns and molecular functions. HEATSTER is a web resource for mining, annotating, and analyzing members of the different classes of HSFs in plants. A web-interface allows the identification and class assignment of HSFs, intuitive searches in the database and visualization of conserved motifs, and domains to classify novel HSFs.


2018 ◽  
Vol 42 (3) ◽  
pp. 874-890 ◽  
Author(s):  
Sotirios Fragkostefanakis ◽  
Stefan Simm ◽  
Asmaa El-Shershaby ◽  
Yangjie Hu ◽  
Daniela Bublak ◽  
...  

2017 ◽  
Vol 131 (3) ◽  
pp. 525-542 ◽  
Author(s):  
Parameswaran Chidambaranathan ◽  
Prasanth Tej Kumar Jagannadham ◽  
Viswanathan Satheesh ◽  
Deshika Kohli ◽  
Santosh Halasabala Basavarajappa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document