Corneal deformation amplitude analysis for keratoconus detection through compensation for intraocular pressure and integration with horizontal thickness profile

2019 ◽  
Vol 109 ◽  
pp. 263-271 ◽  
Author(s):  
Edileuza Leão ◽  
Tsang Ing Ren ◽  
João M. Lyra ◽  
Aydano Machado ◽  
Robert Koprowski ◽  
...  
Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2357
Author(s):  
Shu-Min Tang ◽  
Xiu-Juan Zhang ◽  
Marco Yu ◽  
Yu-Meng Wang ◽  
Carol Y. Cheung ◽  
...  

Associations between corneal biomechanics, axial elongation and myopia are important but previous results are conflicting. Our population-based study aimed to investigate factors associated with corneal biomechanics, and their relationships with myopia in children and adults. Data from 3643 children and 1994 parents showed that children had smaller deformation amplitudes (DA) than parents (p < 0.001). A larger DA was significantly associated with elongated axial length (AL; children: ß = 0.011; adults: ß = 0.0013), higher corneal curvature (children: ß = 0.0086; adults: ß = 0.0096), older age (children: ß = 0.010; adults: ß = 0.0013), and lower intraocular pressure (IOP; children: ß = −0.029; adults: ß = −0.031) in both cohorts. The coefficient of age for DA in children was larger than in adults (p < 0.001), indicating that the DA change with age in children is faster than in adults. DA was significantly associated with spherical equivalent (p < 0.001) resulting from its correlation with AL and corneal curvature. In conclusion, the cornea is more deformable in adults than in children, whereas corneal deformation amplitude increases faster with age in children than that in adults, along with AL elongation. Longer AL, steeper corneal curvature, older age and smaller IOP correspond to a more deformable cornea. The association between corneal deformation amplitude and refraction was mediated via AL and corneal curvature.


2022 ◽  
Vol 11 (1) ◽  
pp. 261
Author(s):  
Agnieszka Boszczyk ◽  
Henryk Kasprzak ◽  
Joanna Przeździecka-Dołyk

Background: The process of rapid propagation of the corneal deformation in air puff tonometer depends not only on intraocular pressure, but also on the biomechanical properties of the cornea and anterior eye. One of the biomechanical properties of the cornea is viscoelasticity, which is the most visible in its high-speed deformations. It seems reasonable to link the corneal viscoelasticity parameter to two moments of the highest speed of corneal deformations, when the cornea buckles. The aim of this work is to present a method of determining the time and place of occurrence of corneal buckling, examine spatial and temporal dependencies between two corneal applanations and bucklings in the Corvis ST tonometer, and correlate these dependencies with corneal viscoelastic properties. Methods: Images of the horizontal cross section of the Corvis ST deformed cornea from the air puff tonometer Corvis ST were used. 14 volunteers participated in the study, each of them had one eye measured eight times. Mutual changes in the profile slopes of the deformed corneas were numerically determined. They describe pure corneal deformation, eliminating the influence of rotation, and displacement of the entire eyeball. For each point in the central area of the corneal profile, the maximum velocities of mutual slope changes accompanying the applanations were estimated. The times of their occurrence were adopted as buckling times. Results: The propagation of buckling along the corneal profile is presented, as well as the repeatability and mutual correlations between the buckling parameters and intraocular pressure. Based on the relationship between them, a new parameter describing corneal hysteresis: Corvis Viscoelasticity (CVE) is introduced. It is characterized by high repeatability: ICC = 0.82 (0.69–0.93 CI) and low and insignificant correlation with intraocular pressure: r = 0.25 (p-value = 0.38). Conclusion: The results show for the first time how to measure the corneal buckling and viscoelastic effects with Corvis ST. CVE is a new proposed biomechanical parameter related to the viscoelastic properties of the cornea, which has high repeatability for the examined subject. The distribution of its values is planned to be tested on different groups of patients in order to investigate its clinical applicability.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Tian ◽  
Yi-Fei Huang ◽  
Li-Qiang Wang ◽  
Hua Bai ◽  
Qun Wang ◽  
...  

Purpose. To compare the corneal biomechanical properties of keratoconic patients and age-matched controls using corneal visualization Scheimpflug technology (Corvis ST).Methods. Sixty keratoconic eyes from 47 keratoconus patients and 60 normal eyes from 60 controls were enrolled in this prospective study. Tomography and biomechanical parameters of all eyes were obtained with the Pentacam and Corvis ST, respectively. Intraocular pressure was measured using a Goldmann applanation tonometer.Results.The tomography and biomechanical parameters of the keratoconic corneas were significantly different from those of the normal corneas except for the anterior chamber angle, first applanation length, the highest concavity time, and peak distance. The deformation amplitude was the best predictive parameter (area under the curve: 0.882), with a sensitivity of 81.7%, although there was a significant overlap between keratoconic and normal corneas that ranged from 1.0 to 1.4 mm. In both the keratoconus and control groups, the deformation amplitude was negatively correlated with intraocular pressure, central corneal thickness, and corneal volume at 3 and 5 mm.Conclusions. Corvis ST offers an alternative method for measuring corneal biomechanical properties. The possibility of classifying keratoconus based on deformation amplitude deserves clinical attention.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Bernardo T. Lopes ◽  
Cynthia J. Roberts ◽  
Ahmed Elsheikh ◽  
Riccardo Vinciguerra ◽  
Paolo Vinciguerra ◽  
...  

Purpose. To assess the repeatability and reproducibility of dynamic corneal response parameters measured by the Corvis ST (Oculus, Wetzlar, Germany). Methods. One eye randomly selected from 32 healthy volunteers was examined by the Corvis ST. Three different devices were used in an alternated random order for taking three measurements at each device in each subject. Standard intraocular pressure (IOP), the biomechanical-compensated IOP (bIOP), and DCR parameters were evaluated. The within-subject standard deviation (ζw) and coefficient of variation (CV) were assessed. Results. Regarding pressure indices, the ζw was below 1 mmHg for repeatability (0.98 for IOP and 0.89 for bIOP) and the CV was 6.6% for IOP and 6.1% for bIOP. For reproducibility, the ζw was around 1 mmHg (1.12 for IOP and 1.05 for bIOP) and the CV was 7.6% for IOP and 7.1% for bIOP. Most of DCR indices presented CV for repeatability below 4%. For reproducibility, the CV of most of the indices were below 6%. The deformation amplitude (DA) ratio in 1 mm and integrated radius were below 4% (1.2% and 3.8%, resp.). Conclusions. The Corvis ST showed good precision (repeatability and reproducibility) for IOP measurements and for DCR in healthy eyes.


2018 ◽  
Vol 10 (3) ◽  
pp. 64
Author(s):  
Karol Marian Karnowski ◽  
Ewa Mączyńska ◽  
Maciej Nowakowski ◽  
Bartłomiej Kałużny ◽  
Ireneusz Grulkowski ◽  
...  

The deformation amplitudes measured with air-puff OCT are sensitive to both (intraocular pressure) IOP and biomechanical properties of the cornea. Analysis of the amplitudes of corneal deformation is challenging due to interrelation of IOP and corneal biomechanics. In this study, we used natural diurnal IOP fluctuations to investigate corneal deformations in a number of subjects whose eyes were measured multiple times during a day. The results of analysis, based on corneal hysteresis, revealed a corneal hysteresis parameter, which remains constant during a day for each individual eye. We hypothesize that above-mentioned metric might correlate with biomechanical properties of the cornea without influence of IOP. Full Text: PDF ReferencesMeek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH, Bron AJ, "Changes in Collagen Orientation and Distribution in Keratoconus Corneas", Invest Ophthalmol Vis Sci, 2005. 46(6): p. 1948-56. CrossRef Zimmermann DR, Fisher RW, Winterhalter KH, Witmer R, Vaughan L, "Comparative studies of collagens in normal and keratoconus corneas", Exp Eye Res, 1988. 46(3): p. 431-42. CrossRef Andreassen TT, Simonsen AH, and Oxlund H, "Biomechanical properties of keratoconus and normal corneas", Experimental Eye Research, 1980. 31(4): p. 435-441. CrossRef Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, "Reduction of Intraocular Pressure and Glaucoma Progression", Arch Ophthalmol, 2002. 120(10): p. 1268-79. CrossRef Chauhan BC and Drance SM, "The influence of intraocular pressure on visual field damage in patients with normal-tension and high-tension glaucoma", Investigative Ophthalmology & Visual Science, 1990. 31(11): p. 2367-2372. DirectLink Gelaw Y, "The impact of central corneal thickness on intraocular pressure among Ethiopian glaucoma patients: a cross-sectional study", BMC Ophthalmology, 2012. 12(1): p. 58. CrossRef Doughty MJ and Zaman ML, "Human Corneal Thickness and Its Impact on Intraocular Pressure Measures: A Review and Meta-analysis Approach", Surv Ophthalmol, 2000. 44(5): p. 367-408. CrossRef Liu J, and Roberts CJ, "Influence of corneal biomechanical properties on intraocular pressure measurement: Quantitative analysis", J Cataract Refract Surg, 2005. 31(1): p. 146-55. CrossRef Ehlers N, Hansen FK, and Aasved H, "Biometric Correlations of Corneal Thickness", Acta Ophthalmol (Copenh), 1975. 53(4): p. 652-9. CrossRef Harada Y, Hirose N, Tawara A, "The Influence of Central Corneal Thickness and Corneal Curvature Radius on The Intraocular Pressure as Measured By Different Tonometers: Noncontact and Goldmann Applanation Tonometers", J Glaucoma, 2008. 17(8): p. 619-25. CrossRef Alonso-Caneiro D, Karnowski K, Kaluzny BJ, Kowalczyk A, Wojtkowski M, "Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system", Optics Express, 2011. 19(15): p. 14188-14199. CrossRef Dorronsoro C, Pascual D, Perez-Merino P, Kling S and Marcos S, "Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas", Biomedical Optics Express, 2012. 3(3): p. 473-487. CrossRef Karnowski K, Kaluzny BJ, Szkulmowski M, Gora M, Wojtkowski M, "Corneal topography with high-speed swept source OCT in clinical examination", Biomedical Optics Express, 2011. 2(9): p. 2709-2720. CrossRef A. N. S. Institute, "American National Standard for Safe use of Lasers," (American National Standards Institute, Orlando, FL, 2000) DirectLink David R, Zangwill L, Briscoe D, Dagan M, Yagev R, Yassur Y, "Diurnal intraocular pressure variations: an analysis of 690 diurnal curves", Br J Ophthamlom, 1992, 76(5): p. 280-282 CrossRef Maczynska E, Karnowski K, Szulzycki K, Malinowska M, Dolezyczek H, Cichanski A, Wojtkowski M, Kaluzny BJ, Grulkowski I, Journal of Biophotonics (to be published).


Sign in / Sign up

Export Citation Format

Share Document