scholarly journals Computational insights into differential interaction of mammalian angiotensin-converting enzyme 2 with the SARS-CoV-2 spike receptor binding domain

Author(s):  
Cecylia Severin Lupala ◽  
Vikash Kumar ◽  
Xiao-dong Su ◽  
Chun Wu ◽  
Haiguang Liu
mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
James R. Byrnes ◽  
Xin X. Zhou ◽  
Irene Lui ◽  
Susanna K. Elledge ◽  
Jeff E. Glasgow ◽  
...  

ABSTRACT As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual’s seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies. IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


2021 ◽  
Vol 14 (10) ◽  
pp. 954
Author(s):  
Paolo Coghi ◽  
Li Jun Yang ◽  
Jerome P. L. Ng ◽  
Richard K. Haynes ◽  
Maurizio Memo ◽  
...  

Host cell invasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by the interaction of the viral spike protein (S) with human angiotensin-converting enzyme 2 (ACE2) through the receptor-binding domain (RBD). In this work, computational and experimental techniques were combined to screen antimalarial compounds from different chemical classes, with the aim of identifying small molecules interfering with the RBD-ACE2 interaction and, consequently, with cell invasion. Docking studies showed that the compounds interfere with the same region of the RBD, but different interaction patterns were noted for ACE2. Virtual screening indicated pyronaridine as the most promising RBD and ACE2 ligand, and molecular dynamics simulations confirmed the stability of the predicted complex with the RBD. Bio-layer interferometry showed that artemisone and methylene blue have a strong binding affinity for RBD (KD = 0.363 and 0.226 μM). Pyronaridine also binds RBD and ACE2 in vitro (KD = 56.8 and 51.3 μM). Overall, these three compounds inhibit the binding of RBD to ACE2 in the μM range, supporting the in silico data.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Christopher J. Day ◽  
Benjamin Bailly ◽  
Patrice Guillon ◽  
Larissa Dirr ◽  
Freda E.-C. Jen ◽  
...  

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged virus that causes coronavirus infectious disease 2019 (COVID-19). SARS-CoV-2 spike protein, like SARS-CoV-1, uses the angiotensin converting enzyme 2 (ACE2) as a cellular receptor to initiate infection. Compounds that interfere with the SARS-CoV-2 spike protein receptor binding domain protein (RBD)-ACE2 receptor interaction may function as entry inhibitors. Here, we used a dual strategy of molecular docking and surface plasmon resonance (SPR) screening of compound libraries to identify those that bind to human ACE2 or the SARS-CoV-2 spike protein receptor binding domain (RBD). Molecular modeling screening interrogated 57,641 compounds and focused on the region of ACE2 that is engaged by RBD of the SARS-CoV-2 spike glycoprotein and vice versa. SPR screening used immobilized human ACE2 and SARS-CoV-2 Spike protein to evaluate the binding of these proteins to a library of 3,141 compounds. These combined screens identified compounds from these libraries that bind at KD (equilibrium dissociation constant) <3 μM affinity to their respective targets, 17 for ACE2 and 6 for SARS-CoV-2 RBD. Twelve ACE2 binders and six of the RBD binders compete with the RBD-ACE2 interaction in an SPR-based competition assay. These compounds included registered drugs and dyes used in biomedical applications. A Vero-E6 cell-based SARS-CoV-2 infection assay was used to evaluate infection blockade by candidate entry inhibitors. Three compounds demonstrated dose-dependent antiviral in vitro potency—Evans blue, sodium lifitegrast, and lumacaftor. This study has identified potential drugs for repurposing as SARS-CoV-2 entry inhibitors or as chemical scaffolds for drug development. IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, has caused more than 60 million cases worldwide with almost 1.5 million deaths as of November 2020. Repurposing existing drugs is the most rapid path to clinical intervention for emerging diseases. Using an in silico screen of 57,641 compounds and a biophysical screen of 3,141 compounds, we identified 22 compounds that bound to either the angiotensin converting enzyme 2 (ACE2) and/or the SARS-CoV-2 spike protein receptor binding domain (SARS-CoV-2 spike protein RBD). Nine of these drugs were identified by both screening methods. Three of the identified compounds, Evans blue, sodium lifitegrast, and lumacaftor, were found to inhibit viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay and may have utility as repurposed therapeutics. All 22 identified compounds provide scaffolds for the development of new chemical entities for the treatment of COVID-19.


2020 ◽  
Vol 8 (23) ◽  
pp. 6603-6610 ◽  
Author(s):  
Werner E. G. Müller ◽  
Meik Neufurth ◽  
Hadrian Schepler ◽  
Shunfeng Wang ◽  
Emad Tolba ◽  
...  

The polymer polyphosphate, abundant in blood platelets, blocks the binding of the receptor-binding domain (RBD) of the SARS- spike (S)-protein to the angiotensin-converting enzyme 2 (ACE2) at low concentrations.


2020 ◽  
Vol 7 (9) ◽  
pp. 200844
Author(s):  
Senthilnathan Rajendaran ◽  
Arunchalam Jothi ◽  
Veerappan Anbazhagan

In silico analysis revealed that a lectin, jacalin from jackfruit seeds, recognizes a glycosylated region of the receptor-binding domain (RBD) of SARS-CoV2. Jacalin binding induces conformational changes in RBD and significantly affects its interaction with human angiotensin-converting enzyme 2. The result may open up exploration of lectin-based strategies against COVID-19.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1244
Author(s):  
Priya Antony ◽  
Ranjit Vijayan

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had a significant impact on people’s daily lives. The rapidly spreading B.1.617 lineage harbors two key mutations—L452R and E484Q—in the receptor binding domain (RBD) of its spike (S) protein. To understand the impact and structural dynamics of the variations in the interface of S protein and its host factor, the human angiotensin-converting enzyme 2 (hACE2), triplicate 500 ns molecular dynamics simulations were performed using single (E484Q or L452R) and double (E484Q + L452R) mutant structures and compared to wild type simulations. Our results indicate that the E484Q mutation disrupts the conserved salt bridge formed between Lys31 of hACE2 and Glu484 of S protein. Additionally, E484Q, which could favor the up conformation of the RBD, may help in enhanced hACE2 binding and immune escape. L452R introduces a charged patch near the binding surface that permits increased electrostatic attraction between the proteins. An improved network of intramolecular interactions observed is likely to increase the stability of the S protein and conformational changes may prevent the binding of neutralizing antibodies. The results obtained from the molecular dynamics simulations suggest that structural and dynamic changes introduced by these variations enhance the affinity of the viral S protein to hACE2 and could form the basis for further studies.


Author(s):  
Hadas Cohen-Dvashi ◽  
Jonathan Weinstein ◽  
Michael Katz ◽  
Maayan Eilon ◽  
Yuval Mor ◽  
...  

AbstractAngiotensin-converting enzyme 2 (ACE2) is the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Computational analysis of mammalian ACE2 orthologues suggests various residues at the interface with the viral receptor binding domain that could facilitate tighter interaction compared to the human-ACE2. Introducing several mutations to the human-ACE2 resulted with significantly augmented affinity to the viral spike complex. This modified human-ACE2 fused to an Fc portion of an antibody makes a potent immunoadhesin that effectively targets SARS-CoV-2.


2021 ◽  
Author(s):  
Kazuki Watanabe ◽  
Chiduru Watanabe ◽  
Teruki Honma ◽  
Yu-Shi Tian ◽  
Yusuke Kawashima ◽  
...  

<p>The spike glycoprotein (S-protein) mediates SARS-CoV-2 entry via intermolecular interaction with human angiotensin-converting enzyme 2 (hACE2). The receptor-binding domain (RBD) of the S-protein has been considered critical for this interaction and acts as the target of numerous neutralizing antibodies and antiviral peptides. This study used the fragment molecular orbital (FMO) method to analyze the interactions between RBD and antibodies/peptides and extracted crucial residues that can be used to epitopes. The interactions evaluated as inter-fragment interaction energy (IFIE) values between the RBD and 12 antibodies/peptides showed a fairly good correlation with the experimental activity pIC<sub>50</sub> (<i>R</i><sup>2</sup> = 0.540). Nine residues (T415, K417, Y421, F456, A475, F486, N487, N501, and Y505) were confirmed as crucial. Pair interaction energy decomposition analyses (PIEDA) showed that hydrogen bonds, electrostatic interactions, and π-orbital interactions are important. Our results provide essential information for understanding SARS-CoV-2-antibodies/peptide binding and may play roles in future antibody/antiviral drug design. </p>


2021 ◽  
Author(s):  
Kazuki Watanabe ◽  
Chiduru Watanabe ◽  
Teruki Honma ◽  
Yu-Shi Tian ◽  
Yusuke Kawashima ◽  
...  

<p>The spike glycoprotein (S-protein) mediates SARS-CoV-2 entry via intermolecular interaction with human angiotensin-converting enzyme 2 (hACE2). The receptor-binding domain (RBD) of the S-protein has been considered critical for this interaction and acts as the target of numerous neutralizing antibodies and antiviral peptides. This study used the fragment molecular orbital (FMO) method to analyze the interactions between RBD and antibodies/peptides and extracted crucial residues that can be used to epitopes. The interactions evaluated as inter-fragment interaction energy (IFIE) values between the RBD and 12 antibodies/peptides showed a fairly good correlation with the experimental activity pIC<sub>50</sub> (<i>R</i><sup>2</sup> = 0.540). Nine residues (T415, K417, Y421, F456, A475, F486, N487, N501, and Y505) were confirmed as crucial. Pair interaction energy decomposition analyses (PIEDA) showed that hydrogen bonds, electrostatic interactions, and π-orbital interactions are important. Our results provide essential information for understanding SARS-CoV-2-antibodies/peptide binding and may play roles in future antibody/antiviral drug design. </p>


Sign in / Sign up

Export Citation Format

Share Document