Quick identification of a simple enzyme deactivation model for an extended-Michaelis-Menten reaction type. Exemplification for the D-glucose oxidation with a complex enzyme deactivation kinetics

2016 ◽  
Vol 93 ◽  
pp. 323-330 ◽  
Author(s):  
Gheorghe Maria
2007 ◽  
Vol 115 (S 1) ◽  
Author(s):  
K Stadlbauer ◽  
B Brunmair ◽  
Z Szöcs ◽  
M Krebs ◽  
A Luger ◽  
...  

1997 ◽  
Vol 78 (5) ◽  
pp. 805-813 ◽  
Author(s):  
Kjell Holtenius ◽  
Paul Holtenius

The metabolic effects of a phlorizin-induced drainage of glucose were studied in six lactating ewes with or without peroral alanine drenches in a study of crossover design. Phlorizin gave rise to a small, but significant, elevation of plasma β-hydroxybutyrate. The plasma level of alanine decreased by about 30 % due to the phlorizin injections and alanine was negatively correlated to β-hydroxybutyrate. The plasma level of free fatty acids increased due to phlorizin. Plasma insulin and glucose concentrations were not significantly affected by phlorizin while glucagon level showed a small but significant increase. Peroral alanine drenches to phlorizin-treated ewes gave rise to a transitory elevation of alanine in plasma. The plasma level of free fatty acids was about 40 % lower in phlorizin-treated ewes receiving alanine and β-hydroxybutyrate tended to be lower (P < 0.08). We suggest that β-hydroxybutyrate, apart from its function as an oxidative fuel, might play an important role by limiting glucose oxidation and protein degradation in skeletal muscles during periods of negative energy balance in ruminants. Furthermore, it is suggested that alanine supplementation decreases lipolysis and ketogenesis in lactating ewes.


2006 ◽  
Vol 290 (1) ◽  
pp. E54-E59 ◽  
Author(s):  
Lucilla D. Monti ◽  
Emanuela Setola ◽  
Gabriele Fragasso ◽  
Riccardo P. Camisasca ◽  
Pietro Lucotti ◽  
...  

The aim of the present study was to evaluate the effect of prolonged inhibition of β-oxidation on glucose and lipid muscle forearm metabolism and cGMP and endothelin-1 forearm release in patients with type 2 diabetes mellitus and ischemic cardiomyopathy. Fifteen patients were randomly allocated in a double-blind cross-over parallel study with trimetazidine (20 mg tid) or placebo lasting 15 days. At the end of each period, all patients underwent euglycemic hyperinsulinemic clamps with forearm indirect calorimetry and endothelial balance of vasodilator and vasoconstricor factors. Compared with placebo, trimetazidine induced 1) an increase in insulin-induced forearm glucose uptake and glucose oxidation accompained by a reduction in forearm lipid oxidation and citrate release and 2) a decrease of endothelin-1 release paralleled by a significant increase in forearm cGMP release. Forearm glucose oxidation significantly correlated with cGMP release ( r = 0.37, P < 0.04), whereas forearm lipid oxidation positively correlated with endothelin-1 release ( r = 0.40, P < 0.03). In conclusion, for the first time, we demonstrated that insulin-induced forearm glucose oxidation and forearm cGMP release were increased whereas forearm endothelin-1 release was decreased during trimetazidine treatment. Muscle's metabolic and vascular effects of trimetazidine add new interest in the use of trimetazidine in type 2 diabetic patients with cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document