scholarly journals Model-based comparison of sequencing batch reactors and continuous-flow activated sludge processes for biological wastewater treatment

2021 ◽  
Vol 144 ◽  
pp. 107127
Author(s):  
Jenifer Benavides Sánchez ◽  
Marianna Vuono ◽  
Davide Dionisi
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9325
Author(s):  
Katarzyna Jaromin-Gleń ◽  
Roman Babko ◽  
Tatiana Kuzmina ◽  
Yaroslav Danko ◽  
Grzegorz Łagód ◽  
...  

Reduction of the greenhouse effect is primarily associated with the reduction of greenhouse gas (GHG) emissions. Carbon dioxide (CO2) is one of the gases that increases the greenhouse effect - it is responsible for about half of the greenhouse effect. Significant sources of CO2 are wastewater treatment plants (WWTPs) and waste management, with about 3% contribution to global emissions. CO2 is produced mainly in the aerobic stage of wastewater purification and is a consequence of activated sludge activity. Although the roles of activated sludge components in the purification process have been studied quite well, their quantitative contribution to CO2 emissions is still unknown. The emission of CO2 caused by prokaryotes and eukaryotes over the course of a year (taking into account subsequent seasons) in model sequencing batch reactors (SBR) is presented in this study. In this work, for the first time, we aimed to quantify this contribution of eukaryotic organisms to total CO2 emissions during the WWTP process. It is of the order of several or more ppm. The contribution of CO2 produced by different components of activated sludge in WWTPs can improve estimation of the emissions of GHGs in this area of human activity.


2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Juliet Johnston ◽  
Sebastian Behrens

ABSTRACT Activated sludge is comprised of diverse microorganisms which remediate wastewater. Previous research has characterized activated sludge using 16S rRNA gene amplicon sequencing, which can help to address questions on the relative abundance of microorganisms. In this study, we used 16S rRNA transcript sequencing in order to characterize “active” populations (via protein synthesis potential) and gain a deeper understanding of microbial activity patterns within activated sludge. Seasonal abundances of individual populations in activated sludge change over time, yet a persistent group of core microorganisms remains throughout the year which are traditionally classified on presence or absence without monitoring of their activity or growth. The goal of this study was to further our understanding of how the activated sludge microbiome changes between seasons with respect to population abundance, activity, and growth. Triplicate sequencing batch reactors were sampled at 10-min intervals throughout reaction cycles during all four seasons. We quantified the gene and transcript copy numbers of 16S rRNA amplicons using real-time PCR and sequenced the products to reveal community abundance and activity changes. We identified 108 operational taxonomic units (OTUs) with stable abundance, activity, and growth throughout the year. Nonproliferating OTUs were commonly human health related, while OTUs that showed seasonal abundance changes have previously been identified as being associated with floc formation and bulking. We observed significant differences in 16S rRNA transcript copy numbers, particularly at lower temperatures in winter and spring. The study provides an analysis of the seasonal dynamics of microbial activity variations in activated sludge based on quantifying and sequencing 16S rRNA transcripts. IMPORTANCE Sequencing batch reactors are a common design for wastewater treatment plants, particularly in smaller municipalities, due to their low footprint and ease of operations. However, like for most treatment plants in temperate/continental climates, the microbial community involved in water treatment is highly seasonal and its biological processes can be sensitive to cold temperatures. The seasonality of these microbial communities has been explored primarily in conventional treatment plants and not in sequencing batch reactors. Furthermore, most studies often only address which organisms are present. However, the activated sludge microbial community is very diverse, and it is often hard to discern which organisms are active and which organisms are simply present. In this study, we applied additional sequencing techniques to also address the issues of which organisms are active and which organisms are growing. By addressing these issues, we gained new insights into seasonal microbial populations dynamics and activity patterns affecting wastewater treatment.


2015 ◽  
Vol 282 ◽  
pp. 106-115 ◽  
Author(s):  
Lauren B. Stadler ◽  
Lijuan Su ◽  
Christopher J. Moline ◽  
Alexi S. Ernstoff ◽  
Diana S. Aga ◽  
...  

1992 ◽  
Vol 25 (6) ◽  
pp. 239-249 ◽  
Author(s):  
J. Wanner

Sequencing batch reactors (SBR) are often used for research on nutrient removal systems. A model anaerobic-oxic SBR was compared with a compartmentalized continuous-flow system. The levels of COD, phosphorus, and nitrogen removal in both systems were comparable but the biocenoses differed significantly. The SVI values of activated sludge from the continuous reactor ranged between 100 and 200 ml/g although no significant occurrence of filamentous microorganisms was observed. The sequencing batch reactor produced activated sludge with the SVIs below 100 ml/g and with high settling velocities. Filamentous microorganisms were frequently observed in the biocenosis of the SBR. The differences in settling properties and filamentous growth in both reactors are discussed and explained.


2016 ◽  
Vol 73 (9) ◽  
pp. 2093-2100 ◽  
Author(s):  
Maryam Reza ◽  
Manuel Alvarez Cuenca

Simultaneous nitrification and denitrifying phosphorus removal was achieved in a single-sludge continuous flow bioreactor. The upright bioreactor was aligned with a biomass fermenter (BF) and operated continuously for over 350 days. This study revealed that unknown bacteria of the Saprospiraceae class may have been responsible for the successful nutrient removal in this bioreactor. The successive anoxic–aerobic stages of the bioreactor with upright alignment along with a 60 L BF created a unique ecosystem for the growth of nitrifier, denitrifiers, phosphorus accumulating organisms and denitrifying phosphorus accumulating organisms. Furthermore, total nitrogen to chemical oxygen demand (COD) ratio and total phosphorus to COD ratio of 0.6 and 0.034, respectively, confirmed the comparative advantages of this advanced nutrient removal process relative to both sequencing batch reactors and activated sludge processes. The process yielded 95% nitrogen removal and over 90% phosphorus removal efficiencies.


Sign in / Sign up

Export Citation Format

Share Document