scholarly journals The role of feedback and guidance as intervention methods to foster computational thinking in educational robotics learning activities for primary school

2022 ◽  
pp. 104431
Author(s):  
Morgane Chevalier ◽  
Christian Giang ◽  
Laila El-Hamamsy ◽  
Evgeniia Bonnet ◽  
Vaios Papaspyros ◽  
...  
Author(s):  
Gaia Lombardi

Coding is a spreading teaching methodology that is involving more students and teachers all over the world. But how can the practice of coding affect the development of computational thinking strategies in early years? The author, a primary school teacher, will investigate the Italian experience, believing that it may constitute an excellent field of study on the matter thanks to the enormous enthusiasm with which coding was received by the teachers, capable of renewing their teaching practices, particularly in primary school. This is a movement born from below, from the spontaneous participation of teachers, and which, in many cases, has been substantiated in what can be defined as unplugged activities, without the use of electronic technological tools.


2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Karin Tengler ◽  
Oliver Kastner-Hauler ◽  
Barbara Sabitzer ◽  
Zsolt Lavicza

Robotics is needed as education keeps up with challenges students are facing in a technological environment. A long-term research project focuses on developing a feasible robotics-based learning environment that enables primary school teachers to introduce computer science education. This paper shows educational robotics combining storytelling to promote computational thinking through the method of Tell, Draw, and Code. The study was conducted via pre–post test, using the Beginners Computational Thinking test (BCTt), with third and fourth graders (N = 40) to determine if the integration of robotics-based storytelling activities enhances computational thinking skills. Results show that an increase in computational thinking is evident after the intervention is implemented. The approach of combining stories, texts, and literature with educational robotics seems to be a promising concept to equip students with the required skills.


2019 ◽  
Vol 27 (02) ◽  
pp. 167
Author(s):  
Rubens Lacerda Queiroz ◽  
Fábio Ferrentini Sampaio ◽  
Mônica Pereira Dos Santos

This paper presents a case study about the development of Computational Thinking in primary school children (3st to 4th grade) via the teaching of programming abilities with the use of educational robotics, free technology and recyclable, low cost materials. We aimed at raising some hypotheses on whether there is a straight relationship between some cognitive aspects of children aged 8-10 (such as the ability to put events and ideas in sequence, the ability to execute mental operations on the basis of concrete experience, among others) and the ability to execute activities that may be linked to the learning of computer programming. The observed results indicated (from the use of a didactic kit developed for the accomplishment of this study) the possibility to develop the following computational thinking skills: abstract thinking ability, understanding of flows of control, Debugging and systematic error detection, iterative thinking, use of conditional logic and problem decomposition.  Regarding the investigations related to cognitive maturity, we found evidence of a correlation between the cognitive characteristics analyzed and the performance of certain tasks related to computer programming, such as the development of purely sequential programs and understanding of processing idea.


2021 ◽  
Vol 8 ◽  
Author(s):  
Matthias G. Funk ◽  
Jose Manuel Cascalho ◽  
Ana Isabel Santos ◽  
Armando B. Mendes

Recently, efforts have been made to add programming activities to the curriculum that promote computational thinking and foster 21st-century digital skills. One of the programming modalities is the use of Tangible Programming Languages (TPL), used in activities with 4+ year old children. In this review, we analyze solutions proposed for TPL in different contexts crossing them with non-TPL solutions, like Graphical Programming Languages (GPL). We start to characterize features of language interaction, their use, and what learning activities are associated with them. Then, in a diagram, we show a relation between the complexity of the languages with factors such as target age and output device types. We provide an analysis considering the type of input (e.g., TPL versus GPL) and output devices (e.g., physical robot versus graphical simulation) and evaluate their contribution to further insights about the general trends with respect to educational robotic systems. Finally, we discuss the opportunities to extend and improve TPLs based on the different solutions identified.


2022 ◽  
pp. 309-325
Author(s):  
Gaia Lombardi

Coding is a spreading teaching methodology that is involving more students and teachers all over the world. But how can the practice of coding affect the development of computational thinking strategies in early years? The author, a primary school teacher, will investigate the Italian experience, believing that it may constitute an excellent field of study on the matter thanks to the enormous enthusiasm with which coding was received by the teachers, capable of renewing their teaching practices, particularly in primary school. This is a movement born from below, from the spontaneous participation of teachers, and which, in many cases, has been substantiated in what can be defined as unplugged activities, without the use of electronic technological tools.


Informatics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 43 ◽  
Author(s):  
Chiazzese ◽  
Arrigo ◽  
Chifari ◽  
Lonati ◽  
Tosto

Research has shown that educational robotics can be an effective tool to increase students’ acquisition of knowledge in the subjects of science, technology, engineering, and mathematics and promote, at the same time, a progression in the development of computational thinking (CT) skills in K–12 (kindergarten to 12th grade) education. Within this research field, the present study first sought to assess the effect of a robotics laboratory on the acquisition of CT-related skills in primary school children. The study also aimed to compare the magnitude of the effect of the laboratory across third- and fourth-grade students. For the purpose of the study, a quasi-experimental post-test-only design was adopted, and a group of 51 students, from third- and fourth-grade classrooms, participating in the robotics laboratories, were compared to a control group of 32 students from classrooms of the same grades. A set of Bebras tasks was selected as an overall measure of CT skills and was administered to children in both the intervention and control groups. Overall, the results showed that programming robotics artefacts may exert a positive impact on students’ learning of computational thinking skills. Moreover, the effect of the intervention was found to be greater among third-grade children.


Author(s):  
Maria Blancas ◽  
Cristina Valero ◽  
Vasiliki Vouloutsi ◽  
Anna Mura ◽  
Paul F. M. J. Verschure

The aim of this work is two-fold. On the one hand, the authors wish to provide relevant information to educators willing to develop an educational robotics (ER) curriculum. They thus provide the current state of the art in the field of ER and the various approaches reported in the literature. They also provide examples of how computational thinking (CT) can be applied in ER and main theories behind ER: constructivism, constructionism, and inquiry-based learning. As ER requires problem-solving abilities, they discuss the link between CT and metacognition, which is considered one of the required educational improvements of the 21st century (also related to the role of gender in STEM methodologies). On the other hand, they wish to present their methodology to teach coding and ER (coding robots through exploring their affordances – CREA), how it was designed, and its main outcomes. It aims at teaching programming and robotics to children in primary school, focusing not on only the performance of the students, but also the cultivation of collaboration, communication, creativity, and critical thinking.


10.12737/6260 ◽  
2015 ◽  
Vol 3 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Аксючиц

The paper considers the essence of such concepts, as “subjectness” and “subject”; characterizes primary school age as the sensitive period for developing a learner’s subject position. Further, it is shown, how educational activities can help primary school pupils to master teamwork in the process of learning. Also highlighted is the role of project tasks as one of the efficient means to form primary schoolchildren’s subject position, to develop their creativity thinking and to enhance their abilities to self-learning, self-education and self-development.


Sign in / Sign up

Export Citation Format

Share Document