Hyperspectral imaging classification based on LBP feature extraction and multimodel ensemble learning

2021 ◽  
Vol 92 ◽  
pp. 107199
Author(s):  
Jinyong Cheng ◽  
Ying Xu ◽  
Lingzhi Kong
Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3147 ◽  
Author(s):  
Liu Zhang ◽  
Zhenhong Rao ◽  
Haiyan Ji

In this study, a hyperspectral imaging system of 866.4–1701.0 nm was selected and combined with multivariate methods to identify wheat kernels with different concentrations of omethoate on the surface. In order to obtain the optimal model combination, three preprocessing methods (standard normal variate (SNV), Savitzky–Golay first derivative (SG1), and multivariate scatter correction (MSC)), three feature extraction algorithms (successive projections algorithm (SPA), random frog (RF), and neighborhood component analysis (NCA)), and three classifier models (decision tree (DT), k-nearest neighbor (KNN), and support vector machine (SVM)) were applied to make a comparison. Firstly, based on the full wavelengths modeling analysis, it was found that the spectral data after MSC processing performed best in the three classifier models. Secondly, three feature extraction algorithms were used to extract the feature wavelength of MSC processed data and based on feature wavelengths modeling analysis. As a result, the MSC–NCA–SVM model performed best and was selected as the best model. Finally, in order to verify the reliability of the selected model, the hyperspectral image was substituted into the MSC–NCA–SVM model and the object-wise method was used to visualize the image classification. The overall classification accuracy of the four types of wheat kernels reached 98.75%, which indicates that the selected model is reliable.


2016 ◽  
Vol 185 ◽  
pp. 1-10 ◽  
Author(s):  
Jaime Zabalza ◽  
Jinchang Ren ◽  
Jiangbin Zheng ◽  
Huimin Zhao ◽  
Chunmei Qing ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4495 ◽  
Author(s):  
Theekshana Dissanayake ◽  
Yasitha Rajapaksha ◽  
Roshan Ragel ◽  
Isuru Nawinne

Recently, researchers in the area of biosensor based human emotion recognition have used different types of machine learning models for recognizing human emotions. However, most of them still lack the ability to recognize human emotions with higher classification accuracy incorporating a limited number of bio-sensors. In the domain of machine learning, ensemble learning methods have been successfully applied to solve different types of real-world machine learning problems which require improved classification accuracies. Emphasising on that, this research suggests an ensemble learning approach for developing a machine learning model that can recognize four major human emotions namely: anger; sadness; joy; and pleasure incorporating electrocardiogram (ECG) signals. As feature extraction methods, this analysis combines four ECG signal based techniques, namely: heart rate variability; empirical mode decomposition; with-in beat analysis; and frequency spectrum analysis. The first three feature extraction methods are well-known ECG based feature extraction techniques mentioned in the literature, and the fourth technique is a novel method proposed in this study. The machine learning procedure of this investigation evaluates the performance of a set of well-known ensemble learners for emotion classification and further improves the classification results using feature selection as a prior step to ensemble model training. Compared to the best performing single biosensor based model in the literature, the developed ensemble learner has the accuracy gain of 10.77%. Furthermore, the developed model outperforms most of the multiple biosensor based emotion recognition models with a significantly higher classification accuracy gain.


Sign in / Sign up

Export Citation Format

Share Document