Multiple kernel fuzzy discriminant analysis for hyperspectral imaging classification

Author(s):  
Shan Zeng ◽  
Jun Bai ◽  
Liang Jiang ◽  
Zhen Kang
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2213
Author(s):  
Ahyeong Lee ◽  
Saetbyeol Park ◽  
Jinyoung Yoo ◽  
Jungsook Kang ◽  
Jongguk Lim ◽  
...  

Biofilms formed on the surface of agro-food processing facilities can cause food poisoning by providing an environment in which bacteria can be cultured. Therefore, hygiene management through initial detection is important. This study aimed to assess the feasibility of detecting Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) on the surface of food processing facilities by using fluorescence hyperspectral imaging. E. coli and S. typhimurium were cultured on high-density polyethylene and stainless steel coupons, which are the main materials used in food processing facilities. We obtained fluorescence hyperspectral images for the range of 420–730 nm by emitting UV light from a 365 nm UV light source. The images were used to perform discriminant analyses (linear discriminant analysis, k-nearest neighbor analysis, and partial-least squares discriminant analysis) to identify and classify coupons on which bacteria could be cultured. The discriminant performances of specificity and sensitivity for E. coli (1–4 log CFU·cm−2) and S. typhimurium (1–6 log CFU·cm−2) were over 90% for most machine learning models used, and the highest performances were generally obtained from the k-nearest neighbor (k-NN) model. The application of the learning model to the hyperspectral image confirmed that the biofilm detection was well performed. This result indicates the possibility of rapidly inspecting biofilms using fluorescence hyperspectral images.


2020 ◽  
Vol 28 (2) ◽  
pp. 70-80 ◽  
Author(s):  
Perez Mukasa ◽  
Collins Wakholi ◽  
Akbar Faqeerzada Mohammad ◽  
Eunsoo Park ◽  
Jayoung Lee ◽  
...  

The combination of hyperspectral imaging with multivariate data analysis methods has recently been applied to develop a nondestructive technique, required to determine the seed viability of artificially aged vegetable and cereal seeds. In this study, the potential of shortwave infrared hyperspectral imaging to determine the viability of naturally aged seeds was investigated and thereafter a model for online seed sorting system was developed. The hyperspectral images of 400 Hinoki cypress tree seeds were acquired, and germination tests were conducted for viability confirmation, which indicated 31.5% of the viable seeds. Partial least square discriminant analysis models with 179 variables in the wavelength region of 1000–1800 nm were developed with a maximum model accuracy of 98.4% and 93.8% in both the calibration and validation sets, respectively. The partial least square discriminant analysis beta coefficient revealed the key wavelengths to differentiate viable from nonviable seeds, determined based on the differences in the chemical compositions of the seeds, including their lipid and fatty acid contents, which may control the germination ability of the seeds. The most effective wavelengths were selected using two model-based variable selection methods (i.e., the variable importance of projection (15 variables) and the successive projections algorithm (8 variables)) to develop the model. The successive projections algorithm wavelength selection method was considered to develop a viability model, and its application to the raw data resulted in a prediction accuracy of 94.7% in the calibration set and 92.2% in the validation set. These results demonstrate the potential of shortwave infrared hyperspectral imaging spectroscopy as a powerful nondestructive method to determine the viability of Hinoki cypress seeds. This method could be applied to develop an online seed sorting system for seed companies and nurseries.


2018 ◽  
Vol 10 (12) ◽  
pp. 2047 ◽  
Author(s):  
Jingjing Cao ◽  
Kai Liu ◽  
Yuanhui Zhu ◽  
Jun Li ◽  
Zhi He

Investigating mangrove species composition is a basic and important topic in wetland management and conservation. This study aims to explore the potential of close-range hyperspectral imaging with a snapshot hyperspectral sensor for identifying mangrove species under field conditions. Specifically, we assessed the data pre-processing and transformation, waveband selection and machine-learning techniques to develop an optimal classification scheme for eight mangrove species in Qi'ao Island of Zhuhai, Guangdong, China. After data pre-processing and transformation, five spectral datasets, which included the reflectance spectra R and its first-order derivative d(R), the logarithm of the reflectance spectra log(R) and its first-order derivative d[log(R)], and hyperspectral vegetation indices (VIs), were used as the input data for each classifier. Consequently, three waveband selection methods, including the stepwise discriminant analysis (SDA), correlation-based feature selection (CFS), and successive projections algorithm (SPA) were used to reduce dimensionality and select the effective wavebands for identifying mangrove species. Furthermore, we evaluated the performance of mangrove species classification using four classifiers, including linear discriminant analysis (LDA), k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). Application of the four considered classifiers on the reflectance spectra of all wavebands yielded overall classification accuracies of the eight mangrove species higher than 80%, with SVM having the highest accuracy of 93.54% (Kappa=0.9256). Using the selected wavebands derived from SPA, the accuracy of SVM reached 93.13% (Kappa=0.9208). The addition of hyperspectral VIs and d[log(R)] spectral datasets further improves the accuracies to 93.54% (Kappa=0.9253) and 96.46% (Kappa=0.9591), respectively. These results suggest that it is highly effective to apply field close-range snapshot hyperspectral images and machine-learning classifiers to classify mangrove species.


2020 ◽  
Vol 10 (19) ◽  
pp. 6724
Author(s):  
Youngwook Seo ◽  
Ahyeong Lee ◽  
Balgeum Kim ◽  
Jongguk Lim

(1) Background: The general use of food-processing facilities in the agro-food industry has increased the risk of unexpected material contamination. For instance, grain flours have similar colors and shapes, making their detection and isolation from each other difficult. Therefore, this study is aimed at verifying the feasibility of detecting and isolating grain flours by using hyperspectral imaging technology and developing a classification model of grain flours. (2) Methods: Multiple hyperspectral images were acquired through line scanning methods from reflectance of visible and near-infrared wavelength (400–1000 nm), reflectance of shortwave infrared wavelength (900–1700 nm), and fluorescence (400–700 nm) by 365 nm ultraviolet (UV) excitation. Eight varieties of grain flours were prepared (rice: 4, starch: 4), and the particle size and starch damage content were measured. To develop the classification model, four multivariate analysis methods (linear discriminant analysis (LDA), partial least-square discriminant analysis, support vector machine, and classification and regression tree) were implemented with several pre-processing methods, and their classification results were compared with respect to accuracy and Cohen’s kappa coefficient obtained from confusion matrices. (3) Results: The highest accuracy was achieved as 97.43% through short-wavelength infrared with normalization in the spectral domain. The submission of the developed classification model to the hyperspectral images showed that the fluorescence method achieves the highest accuracy of 81% using LDA. (4) Conclusions: In this study, the potential of non-destructive classification of rice and starch flours using multiple hyperspectral modalities and chemometric methods were demonstrated.


2019 ◽  
Vol 11 (14) ◽  
pp. 1966-1975 ◽  
Author(s):  
Marcelo C. A. Marcelo ◽  
Frederico L. F. Soares ◽  
Jorge A. Ardila ◽  
Jailson C. Dias ◽  
Ricardo Pedó ◽  
...  

Classification systems are frequently used in tobacco Green Leaf Threshing (GLT) facilities to assess the chemical characteristics and quality of tobacco leaves.


2017 ◽  
Vol 8 (2) ◽  
pp. 264-266 ◽  
Author(s):  
C. Zhang ◽  
F. Liu ◽  
X. P. Feng ◽  
Y. He ◽  
Y. D. Bao ◽  
...  

A ground-based hyperspectral imaging system covering the spectral range of 384–1034 nm was used for Sclerotinia Stem Rot (SSR) detection. Two sample sets of oilseed leaves were collected. Four vegetation indices were extracted and evaluated by analysis of variance (ANOVA) combined with linear discriminant analysis (LDA) for the two sample sets. Discriminant models were built using the 4 vegetation indices. The discriminant results of the two sample sets were good with classification accuracies of the calibration set and the prediction set over 85%. The overall results indicated that vegetation indices calculated from ground-based hyperspectral imaging could be used as reliable and accurate indices for SSR detection.


Sign in / Sign up

Export Citation Format

Share Document