scholarly journals An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4495 ◽  
Author(s):  
Theekshana Dissanayake ◽  
Yasitha Rajapaksha ◽  
Roshan Ragel ◽  
Isuru Nawinne

Recently, researchers in the area of biosensor based human emotion recognition have used different types of machine learning models for recognizing human emotions. However, most of them still lack the ability to recognize human emotions with higher classification accuracy incorporating a limited number of bio-sensors. In the domain of machine learning, ensemble learning methods have been successfully applied to solve different types of real-world machine learning problems which require improved classification accuracies. Emphasising on that, this research suggests an ensemble learning approach for developing a machine learning model that can recognize four major human emotions namely: anger; sadness; joy; and pleasure incorporating electrocardiogram (ECG) signals. As feature extraction methods, this analysis combines four ECG signal based techniques, namely: heart rate variability; empirical mode decomposition; with-in beat analysis; and frequency spectrum analysis. The first three feature extraction methods are well-known ECG based feature extraction techniques mentioned in the literature, and the fourth technique is a novel method proposed in this study. The machine learning procedure of this investigation evaluates the performance of a set of well-known ensemble learners for emotion classification and further improves the classification results using feature selection as a prior step to ensemble model training. Compared to the best performing single biosensor based model in the literature, the developed ensemble learner has the accuracy gain of 10.77%. Furthermore, the developed model outperforms most of the multiple biosensor based emotion recognition models with a significantly higher classification accuracy gain.

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


MethodsX ◽  
2021 ◽  
Vol 8 ◽  
pp. 101166
Author(s):  
Timothy J. Fawcett ◽  
Chad S. Cooper ◽  
Ryan J. Longenecker ◽  
Joseph P. Walton

Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 1-12
Author(s):  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
Noor Azuan Abu Osman ◽  
...  

The skateboarding scene has arrived at new statures, particularly with its first appearance at the now delayed Tokyo Summer Olympic Games. Hence, attributable to the size of the game in such competitive games, progressed creative appraisal approaches have progressively increased due consideration by pertinent partners, particularly with the enthusiasm of a more goal-based assessment. This study purposes for classifying skateboarding tricks, specifically Frontside 180, Kickflip, Ollie, Nollie Front Shove-it, and Pop Shove-it over the integration of image processing, Trasnfer Learning (TL) to feature extraction enhanced with tradisional Machine Learning (ML) classifier. A male skateboarder performed five tricks every sort of trick consistently and the YI Action camera captured the movement by a range of 1.26 m. Then, the image dataset were features built and extricated by means of  three TL models, and afterward in this manner arranged to utilize by k-Nearest Neighbor (k-NN) classifier. The perception via the initial experiments showed, the MobileNet, NASNetMobile, and NASNetLarge coupled with optimized k-NN classifiers attain a classification accuracy (CA) of 95%, 92% and 90%, respectively on the test dataset. Besides, the result evident from the robustness evaluation showed the MobileNet+k-NN pipeline is more robust as it could provide a decent average CA than other pipelines. It would be demonstrated that the suggested study could characterize the skateboard tricks sufficiently and could, over the long haul, uphold judges decided for giving progressively objective-based decision.


Author(s):  
Sarmad Mahar ◽  
Sahar Zafar ◽  
Kamran Nishat

Headnotes are the precise explanation and summary of legal points in an issued judgment. Law journals hire experienced lawyers to write these headnotes. These headnotes help the reader quickly determine the issue discussed in the case. Headnotes comprise two parts. The first part comprises the topic discussed in the judgment, and the second part contains a summary of that judgment. In this thesis, we design, develop and evaluate headnote prediction using machine learning, without involving human involvement. We divided this task into a two steps process. In the first step, we predict law points used in the judgment by using text classification algorithms. The second step generates a summary of the judgment using text summarization techniques. To achieve this task, we created a Databank by extracting data from different law sources in Pakistan. We labelled training data generated based on Pakistan law websites. We tested different feature extraction methods on judiciary data to improve our system. Using these feature extraction methods, we developed a dictionary of terminology for ease of reference and utility. Our approach achieves 65% accuracy by using Linear Support Vector Classification with tri-gram and without stemmer. Using active learning our system can continuously improve the accuracy with the increased labelled examples provided by the users of the system.


2010 ◽  
Vol 36 ◽  
pp. 68-74
Author(s):  
Chuan Jun Liao ◽  
Shuang Fu Suo ◽  
Wei Feng Huang

Acoustic emission (AE) techniques are put forward to monitor rub-impacts between rotating rings and stationary rings of mechanical seals by this paper. By analyzing feature extraction methods of the typical rub-impact AE signal, the method combining of wavelet scalogram and power spectrum is found useful, and can used to attribute the feature information implicated in rub-impact AE signals of mechanical seal end faces. Both simulations and experimental research prove that the method is effective, and are used successfully to identify the typical features of different types of rub-impacts of mechanical seal end faces.


2021 ◽  
Vol 6 (22) ◽  
pp. 51-59
Author(s):  
Mustazzihim Suhaidi ◽  
Rabiah Abdul Kadir ◽  
Sabrina Tiun

Extracting features from input data is vital for successful classification and machine learning tasks. Classification is the process of declaring an object into one of the predefined categories. Many different feature selection and feature extraction methods exist, and they are being widely used. Feature extraction, obviously, is a transformation of large input data into a low dimensional feature vector, which is an input to classification or a machine learning algorithm. The task of feature extraction has major challenges, which will be discussed in this paper. The challenge is to learn and extract knowledge from text datasets to make correct decisions. The objective of this paper is to give an overview of methods used in feature extraction for various applications, with a dataset containing a collection of texts taken from social media.


2019 ◽  
Vol 47 (1) ◽  
pp. 216-248
Author(s):  
Annelen Brunner

Abstract This contribution presents a quantitative approach to speech, thought and writing representation (ST&WR) and steps towards its automatic detection. Automatic detection is necessary for studying ST&WR in a large number of texts and thus identifying developments in form and usage over time and in different types of texts. The contribution summarizes results of a pilot study: First, it describes the manual annotation of a corpus of short narrative texts in relation to linguistic descriptions of ST&WR. Then, two different techniques of automatic detection – a rule-based and a machine learning approach – are described and compared. Evaluation of the results shows success with automatic detection, especially for direct and indirect ST&WR.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2487 ◽  
Author(s):  
José Jiménez-Luna ◽  
Alberto Cuzzolin ◽  
Giovanni Bolcato ◽  
Mattia Sturlese ◽  
Stefano Moro

While a plethora of different protein–ligand docking protocols have been developed over the past twenty years, their performances greatly depend on the provided input protein–ligand pair. In this study, we developed a machine-learning model that uses a combination of convolutional and fully connected neural networks for the task of predicting the performance of several popular docking protocols given a protein structure and a small compound. We also rigorously evaluated the performance of our model using a widely available database of protein–ligand complexes and different types of data splits. We further open-source all code related to this study so that potential users can make informed selections on which protocol is best suited for their particular protein–ligand pair.


Sign in / Sign up

Export Citation Format

Share Document