A robust interface method for reactive fluids with sharp interface

2021 ◽  
pp. 104915
Author(s):  
Min Xiao ◽  
Guoxi Ni ◽  
Xiao Niu
2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


Analysis ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Helmut Abels ◽  
Johannes Kampmann

AbstractWe rigorously prove the convergence of weak solutions to a model for lipid raft formation in cell membranes which was recently proposed in [H. Garcke, J. Kampmann, A. Rätz and M. Röger, A coupled surface-Cahn–Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes, Math. Models Methods Appl. Sci. 26 2016, 6, 1149–1189] to weak (varifold) solutions of the corresponding sharp-interface problem for a suitable subsequence. In the system a Cahn–Hilliard type equation on the boundary of a domain is coupled to a diffusion equation inside the domain. The proof builds on techniques developed in [X. Chen, Global asymptotic limit of solutions of the Cahn–Hilliard equation, J. Differential Geom. 44 1996, 2, 262–311] for the corresponding result for the Cahn–Hilliard equation.


Author(s):  
Marcin Szmul ◽  
Katarzyna Stan-Glowinska ◽  
Marta Janusz-Skuza ◽  
Agnieszka Bigos ◽  
Andrzej Chudzio ◽  
...  

AbstractThis work presents a detailed description of a bonding zone of explosively welded Ti/steel clads subjected to stress relief annealing, applied in order to improve the plasticity of the final product. The typical joint formed by the welding process possesses a characteristic wavy interface with melted regions observed mainly at the crest regions of waves. The interface of Ti/steel clads before and after annealing was previously investigated mostly in respect to the melted regions. Here, a sharp interface between the waves was analyzed in detail. The obtained results indicate that the microstructure of a transition zone of that area is different along the width. After the heat treatment at 600 °C for 1.5 hours, titanium carbide (TiC) together with α-Fe phase forms at the interface in local areas of relatively wide interlayer (~ 1 µm), while for most of the sharp interface, a much thinner zone up to about 400 nm, formed by four sublayers containing intermetallic phase and carbides, is present. This confirms that carbon diffusion induced by applied heat treatment significantly influences the final microstructure of the Ti/steel interface zone. Side bending tests confirmed high plasticity of welds after applied heat treatment; however, the microhardness measurements indicated that the strengthening of the steel in the vicinity of the interface had not been removed completely.


Sign in / Sign up

Export Citation Format

Share Document