Vibration prediction based on the coupling method of half-train model and 3D refined finite element ground model

2021 ◽  
Vol 134 ◽  
pp. 104133
Author(s):  
Bitao Wu ◽  
Yuanlai Zeng ◽  
Zhenwei Zhou ◽  
Gang Wu ◽  
Huaxi Lu
2019 ◽  
Vol 17 (08) ◽  
pp. 1950055 ◽  
Author(s):  
Haiyang Zeng ◽  
Wei Xu ◽  
Mengyan Zang ◽  
Peng Yang

In this work, an indoor soil-bin is designed to investigate the tire–terrain interaction mechanisms for the off-road tires rolling on the gravel terrain. The soil-bin test is carried out by the indoor soil-bin experimental device and the three-dimensional (3D) finite element (FE) and discrete element (DE) coupling method under the same particles conditions, respectively. First, with the indoor soil-bin measurement system, the repeatability of the soil-bin experiments is employed to validate the experimental device and the numerical models. Moreover, the tractive performance experiments of the off-road tires with two tread patterns, smooth and grooved interacting with gravel terrain, are performed at the slip of 10%, 20% and 30%, respectively, to obtain the tractive force and the rim sinkage. Second, the corresponding numerical models are also established, and simulated by the FE–DE coupling method, where the FEM and the DEM are used to describe the off-road tires and the gravel terrain, respectively. The tractive mechanisms of the off-road tires in interaction with the gravel terrain such as the tractive force and the rim sinkage are investigated numerically. Meanwhile, The dynamics and discontinuity of the gravel assembly are described by the presented approach. Besides, both the results of the simulations and experiments indicate that tread patterns and slip conditions have great influence on the tire tractive performance. Finally, the numerical simulations and the experimental results qualitatively show good agreements, which certifies the effectiveness of the FE–DE coupling method in the tractive performance analysis of tire–gravel terrain interactions.


2012 ◽  
Vol 548 ◽  
pp. 421-424
Author(s):  
Jin Ping Wang ◽  
Yu Jing Gao ◽  
De Hua Wang

Coupling method is developed in recent years to solve numerical problems a new method, meshless - the finite element of a direct coupling method is based on the definition of the generalized unit of coupling of the new method . The core of this method is the use of each unit in the shape function to the assumption that the brain that the whole sub-domain to be seeking to solve the unknown field function. Coupling with other compared with the method is simple to calculate the advantages of a short time.


2005 ◽  
Vol 128 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Tianxiang Liu ◽  
Geng Liu ◽  
Q. Jane Wang

The element-free Galerkin-finite element (EFG-FE) coupling method, combined with the linear mathematical programming technique, is utilized to solve two-dimensional elasto-plastic contact problems. Two discretized models for an elastic cylinder contacting with a rigid plane are used to investigate the boundary effects in a contact problem when using the EFG-FE coupling method under symmetric conditions. The influences of the number of Gauss integration points and the size supporting the weight function in the meshless region on the contact pressure and stress distributions are studied and discussed by comparing the numerical results with the theoretical ones. Furthermore, the elasto-plastic contact problems of a smooth cylinder with a plane and a rough surface with a plane are analyzed by means of the EFG-FE method and different elasto-plasticity models.


Sign in / Sign up

Export Citation Format

Share Document