On-line tool wear measurement for ball-end milling cutter based on machine vision

2013 ◽  
Vol 64 (6) ◽  
pp. 708-719 ◽  
Author(s):  
Chen Zhang ◽  
Jilin Zhang
2020 ◽  
Vol 12 (1) ◽  
pp. 168781401989210
Author(s):  
Yuhua Zhang ◽  
Hongzhi Ji

Aimed at solving the problems of tool wear and poor surface quality in milling a Ti alloy with a ball-end milling cutter, a method of applying a microtexture to a tool rake face to reduce tool wear is proposed in this article. By comparing the wear morphology of microtextured tools with that of nontextured tools after milling with the same stroke, the antifriction and antiwear mechanism of the micropit texture and the failure mode of the ball-end milling cutter are analyzed. The results of a simulation and orthogonal experiments reveal that with the increase of the micropit parameters, the wear value of the rake and rear faces first decreases and then increases. The effects of the micropit parameters on the wear value of the ball-end milling cutter decrease in the following order: distance from edge > diameter > spacing > depth. Finally, by using a multi-objective optimization method, the optimal solution set of the texture parameters of micropits is obtained by evaluating the wear values of the rake and rear faces of the ball-end milling cutters: 46 μm < diameter < 50 μm, 23 μm < depth < 26 μm, 109 μm < spacing < 112 μm, and 85 μm < distance from edge < 89 μm.


2020 ◽  
Vol 10 (4) ◽  
pp. 1423
Author(s):  
Guangyue Wang ◽  
Xianli Liu ◽  
Tao Chen ◽  
Weijie Gao

In this paper, a revolving cycloid milling cutter was designed with a larger effective cutting helix angle and rake angle than a ball end milling cutter of the same diameter. This new type of milling cutter can solve the problems of low machining efficiency, severe tool wear, and low surface quality in titanium alloy processing. A comparison of the cutting performance of titanium alloys processed by the revolving cycloid milling cutter and the ball end milling cutter was carried out to obtain the variation laws of the cutting force and the processing surface quality under different tool wear conditions. The result shows that the wear zone of the revolving cycloid milling cutter is shallow and wide compared to that of the ball end milling cutter. As the wear speeds up, the spoon-shaped wear gathering zone found in the ball end milling cutter does not happen with the revolving cycloid milling cutter. The revolving cycloid milling cutter can significantly lower the axial force, the tangential force, and the ratio of the axial force to the tangential force with a stable cutting process.


2020 ◽  
Vol 10 (3) ◽  
pp. 818
Author(s):  
Minli Zheng ◽  
Chunsheng He ◽  
Shucai Yang

The insertion of micro-textures plays a role in reducing friction and increasing wear resistance of the cutters, which also has a certain impact on the stress field of the cutter during milling. Therefore, in order to study the mechanisms of friction reduction and wear resistance of micro-textured cutters in high speed cutting of titanium alloys, the dynamic characteristics of the instantaneous stress field during the machining of titanium alloys with micro-textured cutters were studied by changing the distribution density of the micro-textures on the cutter. First, the micro-texture insertion area of the ball-end milling cutter was theoretically analyzed. Then, variable density micro-textured ball-end milling cutters and non-texture cutters were used to cut titanium alloy, and the mathematical model of milling force and cutter-chip contact area was established. Then, the stress density functions of different micro-texture density cutters and non-texture cutters were established to simulate the stress fields of variable density micro-textured ball-end milling cutters and non-texture cutters. Finally, the genetic algorithm was used to optimize the variable density distribution of micro-textured cutters in which the instantaneous stress field of the cutters was taken as the optimization objective. The optimal solution for the variable density distribution of the micro-textured cutter in the cutter-chip tight contact area was obtained as follows: the texture distribution densities in the first, second, and third areas are second, and third areas are 0.0905, 0.0712, and 0.0493, respectively.


2012 ◽  
Vol 6 (4-5) ◽  
pp. 431-437 ◽  
Author(s):  
Jilin Zhang ◽  
Chen Zhang ◽  
Song Guo ◽  
Laishui Zhou

1994 ◽  
Vol 27 (4) ◽  
pp. 215
Author(s):  
R.H. Osuri ◽  
S. Chatterjee ◽  
S. Chandrashekhar

2010 ◽  
Vol 37-38 ◽  
pp. 1050-1055
Author(s):  
Jiang Hua Ge ◽  
Ping Zhang ◽  
Xiu Lin Sui ◽  
Ping Zhao

In this paper, a new mathematical model and modeling method of ball-end milling cutter which satisfies the request of physical simulation in virtual NC machining system are proposed. The accurate expressions of the cutting edge are presented. The precise functional surface model of ball-end cutter is developed. And the 3-D visualization for ball-end milling cutter in virtual NC machining is implemented. The model can provide necessary and accurate geometric information for physical simulation and has been applied in milling force simulation. It laid the foundation for integration of geometric simulation and physical simulation.


Sign in / Sign up

Export Citation Format

Share Document