scholarly journals Wear optimization of titanium alloy cutter milled with microtextured ball-end milling cutter

2020 ◽  
Vol 12 (1) ◽  
pp. 168781401989210
Author(s):  
Yuhua Zhang ◽  
Hongzhi Ji

Aimed at solving the problems of tool wear and poor surface quality in milling a Ti alloy with a ball-end milling cutter, a method of applying a microtexture to a tool rake face to reduce tool wear is proposed in this article. By comparing the wear morphology of microtextured tools with that of nontextured tools after milling with the same stroke, the antifriction and antiwear mechanism of the micropit texture and the failure mode of the ball-end milling cutter are analyzed. The results of a simulation and orthogonal experiments reveal that with the increase of the micropit parameters, the wear value of the rake and rear faces first decreases and then increases. The effects of the micropit parameters on the wear value of the ball-end milling cutter decrease in the following order: distance from edge > diameter > spacing > depth. Finally, by using a multi-objective optimization method, the optimal solution set of the texture parameters of micropits is obtained by evaluating the wear values of the rake and rear faces of the ball-end milling cutters: 46 μm < diameter < 50 μm, 23 μm < depth < 26 μm, 109 μm < spacing < 112 μm, and 85 μm < distance from edge < 89 μm.

2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878147 ◽  
Author(s):  
Xianli Liu ◽  
Xin Tong ◽  
Shucai Yang ◽  
Chunsheng He ◽  
Xiao Liu

Researches on the effect of the micro-texture on the cutting performance and the life of cutters are mostly aimed at turning cutters, but there are few researches on the ball-end milling cutter. On the basis geometry of the micro-texture, the distribution and the relationship among the geometric parameters of micro-pits are studied. A mechanical characteristic model of machining titanium alloy with the micro-texture ball-end milling cutter is established. Optimal parameters of the micro-texture are determined by the simulation. By the test of machining the titanium alloy with the micro-texture ball-end milling cutter, anti-friction properties, the influence laws of the micro-texture diameter on forces, and area occupancy on the tool wear are studied. This article provides a theoretical reference for determining the location of the micro-texture on ball-end milling cutter and selecting texture parameters reasonably. The anti-friction mechanism of the micro-texture is revealed by the theory, which provides a theoretical basis for the efficient processing of titanium alloy.


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402090842
Author(s):  
Shucai Yang ◽  
Shuai Su ◽  
Xianliang Wang ◽  
Wei Ren

When precision cutting titanium alloy, the cutting part of cutting tool is mainly concentrated in the cutting edge area, so there is a strong emphasis upon the cutting edge’s geometric parameters. Studies have found that putting a micro-texture on the cutting surface can reduce the cutting force. This article looks at the milling force involved in cutting titanium alloy with a micro-textured ball-end milling cutter with different shaped cutting edges. First, a milling model relating to different cutting edges is established based on the traditional model of milling force. Then, the effects of different cutting edge geometry parameters and micro-texture parameters on milling force are simulated and tested using a finite element method. With milling force serving as the evaluation index, the optimum micro-texture parameters for a blunt circular cutting edge are a micro-pit diameter of 40 μm, a distance between micro-pits of 175 μm, a distance from the cutting edge of 110 μm, and a blunt circle radius of 60 μm. For a negative chamfer edge, the optimum parameters were a micro-pit diameter of 50 μm, a distance between micro-pits of 175 μm, a distance from the cutting edge of 120 μm, an edge width of 200 μm, and an edge angle of 10°.


2020 ◽  
Vol 10 (4) ◽  
pp. 1423
Author(s):  
Guangyue Wang ◽  
Xianli Liu ◽  
Tao Chen ◽  
Weijie Gao

In this paper, a revolving cycloid milling cutter was designed with a larger effective cutting helix angle and rake angle than a ball end milling cutter of the same diameter. This new type of milling cutter can solve the problems of low machining efficiency, severe tool wear, and low surface quality in titanium alloy processing. A comparison of the cutting performance of titanium alloys processed by the revolving cycloid milling cutter and the ball end milling cutter was carried out to obtain the variation laws of the cutting force and the processing surface quality under different tool wear conditions. The result shows that the wear zone of the revolving cycloid milling cutter is shallow and wide compared to that of the ball end milling cutter. As the wear speeds up, the spoon-shaped wear gathering zone found in the ball end milling cutter does not happen with the revolving cycloid milling cutter. The revolving cycloid milling cutter can significantly lower the axial force, the tangential force, and the ratio of the axial force to the tangential force with a stable cutting process.


2021 ◽  
pp. 1-21
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

The key characteristic of multi-objective evolutionary algorithm is that it can find a good approximate multi-objective optimal solution set when solving multi-objective optimization problems(MOPs). However, most multi-objective evolutionary algorithms perform well on regular multi-objective optimization problems, but their performance on irregular fronts deteriorates. In order to remedy this issue, this paper studies the existing algorithms and proposes a multi-objective evolutionary based on niche selection to deal with irregular Pareto fronts. In this paper, the crowding degree is calculated by the niche method in the process of selecting parents when the non-dominated solutions converge to the first front, which improves the the quality of offspring solutions and which is beneficial to local search. In addition, niche selection is adopted into the process of environmental selection through considering the number and the location of the individuals in its niche radius, which improve the diversity of population. Finally, experimental results on 23 benchmark problems including MaF and IMOP show that the proposed algorithm exhibits better performance than the compared MOEAs.


2020 ◽  
Vol 10 (3) ◽  
pp. 818
Author(s):  
Minli Zheng ◽  
Chunsheng He ◽  
Shucai Yang

The insertion of micro-textures plays a role in reducing friction and increasing wear resistance of the cutters, which also has a certain impact on the stress field of the cutter during milling. Therefore, in order to study the mechanisms of friction reduction and wear resistance of micro-textured cutters in high speed cutting of titanium alloys, the dynamic characteristics of the instantaneous stress field during the machining of titanium alloys with micro-textured cutters were studied by changing the distribution density of the micro-textures on the cutter. First, the micro-texture insertion area of the ball-end milling cutter was theoretically analyzed. Then, variable density micro-textured ball-end milling cutters and non-texture cutters were used to cut titanium alloy, and the mathematical model of milling force and cutter-chip contact area was established. Then, the stress density functions of different micro-texture density cutters and non-texture cutters were established to simulate the stress fields of variable density micro-textured ball-end milling cutters and non-texture cutters. Finally, the genetic algorithm was used to optimize the variable density distribution of micro-textured cutters in which the instantaneous stress field of the cutters was taken as the optimization objective. The optimal solution for the variable density distribution of the micro-textured cutter in the cutter-chip tight contact area was obtained as follows: the texture distribution densities in the first, second, and third areas are second, and third areas are 0.0905, 0.0712, and 0.0493, respectively.


Sign in / Sign up

Export Citation Format

Share Document