Shape constraint function for artery tracking in ultrasound images

Author(s):  
Arnaud Paris ◽  
Adel Hafiane
2021 ◽  
Vol 21 (03) ◽  
pp. 2150031
Author(s):  
YANG ZHENG ◽  
ZHONGPING CHEN ◽  
JIAKE WANG ◽  
SHU JIANG ◽  
YU LIU

Segmentation of the left ventricle in ultrasound images for viewing through different axes is a critical aspect. This paper proposes the development of novel active contour models with shape constraint to segment the left ventricle in three different axis views of the ultrasound images. The shapes observed in all the axis views of the left ventricle were not similar. According to the cardiac cycle, the valve opening in the end-diastolic phase influenced the left ventricle segmentation; hence, a shape constraint was embedded in the active contour model to keep ventricle’s shape, especially in the Apical long-axis view and Apical four-chamber view. Furthermore, for different axes views, diverse active contour models were proposed to fit each situation. The shape constraint in each function for different views exhibited a specific shape during the function iteration. In order to speed up the algorithm evolution, previous results were used for the initialization of the present active contour. We evaluated the proposed method on 57 patients with three different views: Apical long-axis view, Apical four-chamber view and Short-axis view at the papillary muscle level and obtained the Dice similarity coefficients of [Formula: see text], [Formula: see text] and [Formula: see text] and the Hausdorff distance metrics of [Formula: see text], [Formula: see text] and [Formula: see text], respectively. The qualitative and quantitative evaluations showed an advantage of our method in terms of segmentation accuracy.


2012 ◽  
Vol 58 (4) ◽  
pp. 425-431 ◽  
Author(s):  
D. Selvathi ◽  
N. Emimal ◽  
Henry Selvaraj

Abstract The medical imaging field has grown significantly in recent years and demands high accuracy since it deals with human life. The idea is to reduce human error as much as possible by assisting physicians and radiologists with some automatic techniques. The use of artificial intelligent techniques has shown great potential in this field. Hence, in this paper the neuro fuzzy classifier is applied for the automated characterization of atheromatous plaque to identify the fibrotic, lipidic and calcified tissues in Intravascular Ultrasound images (IVUS) which is designed using sixteen inputs, corresponds to sixteen pixels of instantaneous scanning matrix, one output that tells whether the pixel under consideration is Fibrotic, Lipidic, Calcified or Normal pixel. The classification performance was evaluated in terms of sensitivity, specificity and accuracy and the results confirmed that the proposed system has potential in detecting the respective plaque with the average accuracy of 98.9%.


Choonpa Igaku ◽  
2016 ◽  
Vol 43 (1) ◽  
pp. 103-113
Author(s):  
Satoshi KAWABATA ◽  
Nobuko TAGAMI ◽  
Norikazu OBANE ◽  
Kyoko TSUMURA ◽  
Nanae SENZAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document