scholarly journals Experimental study of the indentation of sandwich panels with carbon fibre-reinforced polymer face sheets and polymeric foam core

2011 ◽  
Vol 42 (5) ◽  
pp. 1212-1219 ◽  
Author(s):  
E.A. Flores-Johnson ◽  
Q.M. Li
2017 ◽  
Vol 21 (8) ◽  
pp. 2779-2800 ◽  
Author(s):  
Peter Rupp ◽  
Peter Elsner ◽  
Kay A Weidenmann

In this paper, the bending stiffness-to-weight-ratio of novel hybrid sandwich structures is investigated. The build-up of the sandwich panels consisted of face sheets made from carbon fibre reinforced polymer, aluminium foam cores and an interface of foamed polyurethane. The sandwich panels were produced in a single step, infiltrating the face sheet fibres and connecting the face sheets to the core simultaneously. By means of mechanical characterization, specimens with several variations of face sheet architecture and thickness, core structure and interface properties were examined. Quasi-static four-point bending and flatwise compression tests of the sandwich composites were conducted, as well as tensile tests of the face sheets. The results of the tensile and compressive tests were integrated in analytical models, describing the sandwich stiffness depending on the load case and the face sheet volume fraction. The effective Young’s modulus of the composite, measured in the four-point bending test, correlates well to the modelled effective bending modulus calculated from the single components face sheet and core. The model underestimates the effective density of the bending specimens. It could be shown that this underestimation results from the polyurethane foam connecting the face sheets to the core, as the mass of this polyurethane is not included in the model.


2016 ◽  
Vol 66 (324) ◽  
pp. 103 ◽  
Author(s):  
M. Fernández-Cánovas ◽  
M. N. González-García ◽  
J. Á. Piñero ◽  
A. Cobo

This behaviour of low- and medium-strength concrete specimens confined with carbon fibre-reinforced polymer (CFRP) was analysed in three loading cycles. In some cases, stress levels were achieved that produced intemal microcracks, which allowed residual rigidity and the behaviour of completely microcraked concrete specimens to be studied. The specimens were subsequently tested to compression to the fracture point. Specimens reinforced in accordance with no manufacturing defects (100% CFRP reinforcement) and major manufacturing defects (50% CFRP reinforcement) were assessed for effectiveness and behaviour of the confined elements in less than ideal conditions. Results show that confinement was higher in low-resistance concretes, that the behaviour of reinforced specimens was unaffected by defective implementation conditions and that the reinforced specimens were less rigid than the non-reinforced specimens when tested up to 40% of ultimate fracture strength.


Sign in / Sign up

Export Citation Format

Share Document