Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid–liquid co-existent state by SPS

2011 ◽  
Vol 42 (5) ◽  
pp. 1029-1034 ◽  
Author(s):  
Kiyoshi Mizuuchi ◽  
Kanryu Inoue ◽  
Yasuyuki Agari ◽  
Yoshiaki Morisada ◽  
Masami Sugioka ◽  
...  
1993 ◽  
Vol 323 ◽  
Author(s):  
Shy-Wen Lai ◽  
D. D. L. Chung

AbstractAluminum-matrix composites containing AIN or SiC particles were fabricated by vacuum infiltration of liquid aluminum into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AIN was superior to Al/SiC in thermal conductivity. At 59 vol.% AIN, Al/AlN had a thermal conductivity of 157 W/m. °C and a thermal expansion coefficient of 9.8 × 10−-6°C−1 (35–100 °C). Al/AlN had similar tensile strength and higher ductility compared to Al/SiC of a similar reinforcement volume fraction at room temperature, but exhibited higher tensile strength and higher ductility at 300–400°C. The ductility of Al/AlN increased with increasing temperature from 22 to 400°C, while that of Al/SiC did not change with temperature. The superior high temperature resistance of Al/AlN is attributed to the lack of a reaction between Al and AIN, in contrast to the reaction between Al and SiC in AI/SiC.


1995 ◽  
Vol 390 ◽  
Author(s):  
Jiangyuan Hou ◽  
D. D. L. Chung

ABSTRACTAluminum-matrix composites are attractive in their combination of low CTE and high thermal conductivity. Anodizing is an effective surface treatment for improving the corrosion resistance of aluminum-matrix composites. ForSiC filled aluminum, anodizing was performed successfully in an acid electrolyte, as usual. However, for AIN filled aluminum, anodizing needed to be performed in an alkaline (NaOH) electrolyte instead of an acid electrolyte, because NaOH reduced the reaction between AIN and water, whereas an acid enhanced this reaction. The concentration of NaOH in the electrolyte was critical; too high a concentration of NaOH caused the dissolution of the anodizing product (A12O3) by the NaOH, whereas too low a concentration of NaOH did not provide enough ions for the electrochemical process.


Sign in / Sign up

Export Citation Format

Share Document