Aluminum-Matrix Aluminum Nitride Particle Composite as a Low-Thermal-Expansion Thermal Conductor

1993 ◽  
Vol 323 ◽  
Author(s):  
Shy-Wen Lai ◽  
D. D. L. Chung

AbstractAluminum-matrix composites containing AIN or SiC particles were fabricated by vacuum infiltration of liquid aluminum into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AIN was superior to Al/SiC in thermal conductivity. At 59 vol.% AIN, Al/AlN had a thermal conductivity of 157 W/m. °C and a thermal expansion coefficient of 9.8 × 10−-6°C−1 (35–100 °C). Al/AlN had similar tensile strength and higher ductility compared to Al/SiC of a similar reinforcement volume fraction at room temperature, but exhibited higher tensile strength and higher ductility at 300–400°C. The ductility of Al/AlN increased with increasing temperature from 22 to 400°C, while that of Al/SiC did not change with temperature. The superior high temperature resistance of Al/AlN is attributed to the lack of a reaction between Al and AIN, in contrast to the reaction between Al and SiC in AI/SiC.

Author(s):  
Preetkanwal Singh Bains ◽  
H. S. Payal ◽  
Sarabjeet Singh Sidhu

The present study investigates the thermal conductivity and coefficient of thermal expansion of bimodal SiCp reinforced Aluminum matrix composites formed via powder metallurgy method. The after-effects of proportion of particulate reinforcement as size distribution and sintering parameters on the thermal properties have been explored. The Box-Behnken design for response surface methodology was adopted to recognize the significance of chosen variables on the thermal conductivity and coefficient of thermal expansion of the composite. It is witnessed that the thermal conductivity and coefficient of thermal expansion enhanced due to increase in fine SiC particulates volume fraction. It has been exhibited that the fine SiC particulates (37μm) doped Al-matrix occupied interstitial positions and developed continuous SiC-matrix network. SEMs were conducted to evaluate the microstructure architecture for MMCs.


1998 ◽  
Vol 551 ◽  
Author(s):  
J.-M. Ting ◽  
C. Tang ◽  
P. Lake

AbstractAluminum matrix composites reinforced with high thermal conductivity vapor grown carbon fiber (VGCF) were developed for improved thermal efficiencies in electronic devices. The carbon fiber was heat treated to increase its thermal conductivity. Various aluminum matrix composites were fabricated by the densification of fiber preforms using a pressure casting technique. Uniformity of the density was examined using optical microscopy. A scanning electron microscope equipped with a microprobe was utilized to examine the mechanical integrity of the composite. Mechanical properties, including tension, compression and flexural properties, were measured. While the results of the mechanical property measurements indicate moderate values, the composite exhibited remarkable thermal conductivity that reached 642 W/m.K, three times that of aluminum, at a fiber volume fraction of 36.5%, following closely the rule of mixture.


2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


2015 ◽  
Vol 787 ◽  
pp. 583-587 ◽  
Author(s):  
V. Mohanavel ◽  
K. Rajan ◽  
K.R. Senthil Kumar

In the present study, an aluminum alloy AA6351 was reinforced with different percentages (1, 3 and 5 wt %) of TiB2 particles and they were successfully fabricated by in situ reaction of halide salts, potassium hexafluoro-titanate and potassium tetrafluoro-borate, with aluminium melt. Tensile strength, yield strength and hardness of the composite were investigated. In situ reaction between the inorganic salts K2TiF6 and KBF4 to molten aluminum leads to the formation of TiB2 particles. The prepared aluminum matrix composites were characterized using X-ray diffraction and scanning electron microscope. Scanning electron micrographs revealed a uniform dispersal of TiB2 particles in the aluminum matrix. The results obtained indicate that the hardness and tensile strength were increased with an increase in weight percentages of TiB2 contents.


2003 ◽  
Vol 18 (4) ◽  
pp. 855-860 ◽  
Author(s):  
Gary L. Eesley ◽  
Alaa Elmoursi ◽  
Nilesh Patel

Kinetic spray deposition provides a new means for producing composite materials with tailored physical properties. We report on measurements of the thermal conductivity and thermal-expansion coefficient for several compositional variations of kinetically sprayed Al–SiC metal-matrix composites. As a result of the deposition process, inclusion of SiC particles saturates in the 30–40% volume fraction range.


2014 ◽  
Vol 1017 ◽  
pp. 98-103
Author(s):  
Fei Hu Zhang ◽  
Kai Wang ◽  
Peng Qiang Fu ◽  
Meng Nan Wu

With silicon particles reinforced aluminum matrix composites with high volume fraction becoming a new hotspot on research and application in the aerospace materials and electronic packaging materials, the machinability of this material needs to be explored. This paper reports research results obtained from the surface grinding experiment of silicon particles reinforced aluminum matrix composites using black silicon carbide wheel, green silicon carbide wheel, white fused alumina wheel and chromium alumina wheel. The issues discussed are grinding force, surface roughness, the comparison of different grinding wheels, the micro-morphology of the work piece. The results showed that the grinding force was related with the grinding depth and the grinding wheel material, the grinding force was increasing as the grinding depth growing. The surface roughness was between 0.29μm and 0.48μm using the silicon carbide wheel. The surface of the work piece had concaves caused by silicon particles shedding and grooves caused by the grains observed by the SEM and CLSM.


Sign in / Sign up

Export Citation Format

Share Document