High thermal conductivity and low thermal expansion coefficient of isotropic graphite-reinforced aluminum matrix composites prepared by in situ curing of silicon aerogel

2020 ◽  
Vol 31 (12) ◽  
pp. 9250-9259 ◽  
Author(s):  
Xuanyi Peng ◽  
Huang Ying ◽  
Xu Sun ◽  
Xiaopeng Han ◽  
Rui Fan ◽  
...  
1993 ◽  
Vol 323 ◽  
Author(s):  
Shy-Wen Lai ◽  
D. D. L. Chung

AbstractAluminum-matrix composites containing AIN or SiC particles were fabricated by vacuum infiltration of liquid aluminum into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AIN was superior to Al/SiC in thermal conductivity. At 59 vol.% AIN, Al/AlN had a thermal conductivity of 157 W/m. °C and a thermal expansion coefficient of 9.8 × 10−-6°C−1 (35–100 °C). Al/AlN had similar tensile strength and higher ductility compared to Al/SiC of a similar reinforcement volume fraction at room temperature, but exhibited higher tensile strength and higher ductility at 300–400°C. The ductility of Al/AlN increased with increasing temperature from 22 to 400°C, while that of Al/SiC did not change with temperature. The superior high temperature resistance of Al/AlN is attributed to the lack of a reaction between Al and AIN, in contrast to the reaction between Al and SiC in AI/SiC.


2018 ◽  
Vol 768 ◽  
pp. 87-91
Author(s):  
Jin Ping Li ◽  
Cheng Yang ◽  
Yu Han Li ◽  
Song He Meng

The ZrO2/ZrW2O8 ceramic matrix composites have been prepared by the two different processes: (1) ZrO2 and ZrW2O8 powders were mixed directly as raw material, then compacted by cold isostatic pressing under 200MPa, and finally, the ceramic matrix composites with low thermal expansion can be prepared by use of heat-pressing sintering or atmospheric sintering at temperature 1215oC. (2) ZrO2 (with excess mass) and WO3 powers were mixed as raw material, then compacted by cold isostatic pressing under 200MPa, and finally, the ZrO2/ZrW2O8 ceramic matrix composites can be made by use of heat-pressing sintering or atmospheric sintering at temperature 1215 oC after ZrW2O8 were synthesized by in-situ reaction of ZrO2 and WO3 powders at the same temperature. The microstructure, density, ZrW2O8 decomposition degree and the thermal expansion coefficient were compared among the sintered samples fabricated by the above two different methods, and affected by the different process parameters. The results show that the ceramic matrix composites with low thermal expansion are really composed of ZrO2, ZrW2O8 and WO3, and their relative densities are all more than 95%. Compared with the composites prepared by in-situ reaction, the densities, ZrW2O8 decomposition degree and the thermal expansion coefficient of the composites made by direct mixing are higher, less and smaller, respectively.


2013 ◽  
Vol 752 ◽  
pp. 48-56
Author(s):  
Andrea Simon ◽  
Károly Kovács ◽  
C. Hakan Gür ◽  
Tadeusz Pieczonka ◽  
Zoltán Gácsi

Composites are special material which can provide individual properties such as high strength with low density or good thermal conductivity with low thermal expansion coefficient. Composites conform to the constantly evolving and more complex expectations. In order to make a product with good quality, it is important to choose suitable materials and technology. In this research powder metallurgy (PM), as one of the most common composite manufacturing technology, was examined -which factors and mechanisms influence mostly the properties of the product. Ishikawa method was used to reveal these correlations.


Author(s):  
Preetkanwal Singh Bains ◽  
H. S. Payal ◽  
Sarabjeet Singh Sidhu

The present study investigates the thermal conductivity and coefficient of thermal expansion of bimodal SiCp reinforced Aluminum matrix composites formed via powder metallurgy method. The after-effects of proportion of particulate reinforcement as size distribution and sintering parameters on the thermal properties have been explored. The Box-Behnken design for response surface methodology was adopted to recognize the significance of chosen variables on the thermal conductivity and coefficient of thermal expansion of the composite. It is witnessed that the thermal conductivity and coefficient of thermal expansion enhanced due to increase in fine SiC particulates volume fraction. It has been exhibited that the fine SiC particulates (37μm) doped Al-matrix occupied interstitial positions and developed continuous SiC-matrix network. SEMs were conducted to evaluate the microstructure architecture for MMCs.


Sign in / Sign up

Export Citation Format

Share Document