Bond behavior of FRP carbon plates externally bonded over steel and concrete elements: Experimental outcomes and numerical investigations

2016 ◽  
Vol 92 ◽  
pp. 434-446 ◽  
Author(s):  
F. Ceroni ◽  
M. Ianniciello ◽  
M. Pecce
2021 ◽  
pp. 232-242
Author(s):  
Elena Ciampa ◽  
Francesca Ceroni ◽  
Maria Rosaria Pecce

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1154
Author(s):  
Dario De Domenico ◽  
Antonino Quattrocchi ◽  
Damiano Alizzio ◽  
Roberto Montanini ◽  
Santi Urso ◽  
...  

Digital Image Correlation (DIC) provides measurements without disturbing the specimen, which is a major advantage over contact methods. Additionally, DIC techniques provide full-field maps of response quantities like strains and displacements, unlike traditional methods that are limited to a local investigation. In this work, an experimental application of DIC is presented to investigate a problem of relevant interest in the civil engineering field, namely the interface behavior between externally bonded fabric reinforced cementitious mortar (FRCM) sheets and concrete substrate. This represents a widespread strengthening technique of existing reinforced concrete structures, but its effectiveness is strongly related to the bond behavior between composite fabric and underlying concrete. To investigate this phenomenon, a set of notched concrete beams are realized, reinforced with FRCM sheets on the bottom face, subsequently cured in different environmental conditions (humidity and temperature) and finally tested up to failure under three-point bending. Mechanical tests are carried out vis-à-vis DIC measurements using two distinct cameras simultaneously, one focused on the concrete front face and another focused on the FRCM-concrete interface. This experimental setup makes it possible to interpret the mechanical behavior and failure mode of the specimens not only from a traditional macroscopic viewpoint but also under a local perspective concerning the evolution of the strain distribution at the FRCM-concrete interface obtained by DIC in the pre- and postcracking phase.


Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 565-579
Author(s):  
Comfort Mensah ◽  
Benzhi Min ◽  
Alex Osei Bonsu ◽  
Zhenqing Wang

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Md. Ashraful Alam ◽  
Suliman A. Bakkar ◽  
Shahnawaz A. Onik ◽  
Kamal N. Mustapha

Environmental impact has become one of the major factors taken into consideration for recent civil engineering studies and projects. Thus, researchers have been concentrating on shear strengthening of existing reinforced concrete structure as an upgrade method instead of demolishing and reconstructing. In general, shear strengthening of RC beams using externally bonded steel plate has gained huge popularity. However, premature debonding of plates is the main drawback of the system, which could be mitigated using embedded connector; thus, the dimension of steel plate could be reduced significantly. Furthermore, numerical analysis on shear strengthening of beams using embedded connector would provide a great insight on the structural behavior. The aim of this research is to severely reduce the dimension of the steel plate using embedded connector for shear strengthening of RC beams and to investigate the performances of optimized shear-strengthened beams through experimental and numerical investigations. The results showed that the dimension of plate was reduced without debonding of the plate if the beam was designed for shear strengthening with the consideration of yield strength of steel plate and shear link. Experimental results showed a maximum increase in failure of 24%. The numerical results predicted accurately the structural performance of beams. The embedded connector had a great effect in deferring and minimizing the debonding failure and accordingly increasing the maximum load of shear failure between 14.5% and 24% compared to control beam.


2012 ◽  
Vol 43 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Francesca Ceroni ◽  
Marisa Pecce ◽  
Antonio Bilotta ◽  
Emidio Nigro

2020 ◽  
Vol 10 (23) ◽  
pp. 8593
Author(s):  
Rafał Krzywoń

This manuscript assessed the applicability of the existing ultimate bond formulas originally developed for externally bonded carbon fiber-based composites in the analysis of steel-reinforced polymers (SRPs). In the first part, the methods of predicting the bond capacity are reviewed, the differences are indicated, and the factors determining the bond are discussed; then, using the bond test results of over 400 samples available in the literature, the bond prediction methods are assessed by graphical comparison. The evaluation mainly concerned concrete elements and epoxy adhesives; however, to a lesser extent, a similar analysis was performed for the masonry substrate and grout matrices. The results showed the relatively good applicability of the majority of bond prediction models for the analysis of SRP composites. In most cases, the ultimate bond force was slightly underestimated, which was beneficial in the design of this type of strengthening. Larger discrepancies concerned weaker grout matrices.


Sign in / Sign up

Export Citation Format

Share Document