3D microstructural characterization and mechanical properties determination of short basalt fiber-reinforced polyamide 6,6 composites

2020 ◽  
Vol 187 ◽  
pp. 107839 ◽  
Author(s):  
Siwon Yu ◽  
Jun Yeon Hwang ◽  
Soon Hyung Hong
2013 ◽  
Vol 20 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Pandian Amuthakkannan ◽  
Vairavan Manikandan ◽  
Jebbas Thangaiah Winowlin Jappes ◽  
Marimuthu Uthayakumar

AbstractMechanical properties of fiber reinforcement that can be obtained by the introduction of basalt fibers in jute fiber-reinforced polyester composites have been analyzed experimentally. Basalt/jute fiber-reinforced hybrid polymer composites were fabricated with a varying fiber percentage by using compression molding techniques. The fabricated composite plates were subjected to mechanical testing to estimate tensile strength, flexural strength and impact strength of the composites. The effect of fiber content on basalt/jute fiber in the composites has been studied. Addition of jute fiber into basalt fiber composite makes it a cost-effective one. Incorporation of basalt fiber into the composites was at approximately 10%, 20%, up to 90%, and the jute fiber percentage was reduced from 90%, 80%, to 10% correspondingly. Mechanical properties were investigated as per ASTM standards. Tensile and flexural strengths were tested by using a computer-assisted universal testing machine, and impact strength by using an Izod impact tester. It has been observed that the addition of jute fiber to the basalt fiber polyester composites enhanced the mechanical properties. Water absorption of hybrid composites was also analyzed and was found to be proportional to fiber percentage.


2018 ◽  
Vol 188 ◽  
pp. 946-955 ◽  
Author(s):  
Jihui Qin ◽  
Jueshi Qian ◽  
Zhen Li ◽  
Chao You ◽  
Xiaobing Dai ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1306 ◽  
Author(s):  
Binbin Zheng ◽  
Dongming Zhang ◽  
Weisha Liu ◽  
Yonghao Yang ◽  
Han Yang

As one of the largest artificial geotechnical structures on earth, the tailings dams are classified as one of the high-risk sources in China’s industry. How to improve the stability and safety of tailings dams remains a challenge for mine operators currently. In this paper, an innovative method is presented for improving the stability of tailings dams, in which the basalt fiber is used to reinforce tailings. The mechanical properties of tailings used for dam-construction have a great influence on the stability of tailings dam. In order to investigate the mechanical performance of basalt fiber-reinforced tailings (BFRT), a series of laboratory triaxial tests were conducted. The effects of five parameters (fiber length, fiber content, particle size, dry density and confining pressure) on the mechanical properties of BFRT were studied. The microstructure and the behavior of interfaces between basalt fibers and tailings particles were analyzed by using scanning electron microscopy (SEM). The triaxial experimental test results show that the mechanical properties of BFRT increase with the increases of fiber length and content, particle size, dry density and confining pressure. The SEM results indicate that the interfacial interaction between fibers and tailings particles is mainly affected by particle shape.


Sign in / Sign up

Export Citation Format

Share Document