A simple, low-cost approach to prepare flexible highly conductive polymer composites by in situ reduction of silver carboxylate for flexible electronic applications

2011 ◽  
Vol 71 (4) ◽  
pp. 528-534 ◽  
Author(s):  
Rongwei Zhang ◽  
Kyoung-sik Moon ◽  
Wei Lin ◽  
Josh C. Agar ◽  
Ching-Ping Wong
2018 ◽  
Vol 10 (2) ◽  
pp. 2083-2092 ◽  
Author(s):  
Matthew I. Ralphs ◽  
Nicholas Kemme ◽  
Prathamesh B. Vartak ◽  
Emil Joseph ◽  
Sujal Tipnis ◽  
...  

2021 ◽  
Vol 2080 (1) ◽  
pp. 012008
Author(s):  
Farah Badrul ◽  
Khairul Anwar Abdul Halim ◽  
MohdArif Anuar Mohd Salleh ◽  
Azlin Fazlina Osman ◽  
Nor Asiah Muhamad ◽  
...  

Abstract Low-linear density (LDPE) and copper (Cu) were used as main polymer matrix and conductive filler in order to produce electrically conductive polymer composites (CPC). The selection of the matrix and conductive filler were based on their due to its excellence properties, resistance to corrosion, low cost and electrically conductive. This research works is aimed to establish the effect of compounding parameter on the electrical conductivity of LDPE/Cu composites utilising the design of experiments (DOE). The CPCs was compounded using an internal mixer where all formulations were designed by statistical software. The scanning electron micrograph (SEM) revealed that the Cu conductive filler had a flake-like shape, and the electrical conductivity was found to be increased with increasing filler loading as measured using the four-point probe technique. The conductivity data obtained were then analysed by using the statistical software to establish the relationship between the compounding parameters and electrical conductivity where it was found based that the compounding parameters have had an effect on the conductivity of the CPC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Libing Liu ◽  
Dong Xiang ◽  
Yuanpeng Wu ◽  
Zuoxin Zhou ◽  
Hui Li ◽  
...  

With the development of wearable electronic devices, conductive polymer composites (CPCs) based flexible strain sensors are gaining tremendous popularity. In recent years, the applications of additive manufacturing (AM) technology (also known as 3D printing) in fabricating CPCs based flexible strain sensors have attracted the attention of researchers due to their advantages of mold-free structure, low cost, short time, and high accuracy. AM technology, based on material extrusion, photocuring, and laser sintering, produces complex and high-precision CPCs based wearable sensors through layer-by-layer stacking of printing material. Some high-performance CPCs based strain sensors are developed by employing different 3D printing technologies and printing materials. In this mini-review, we summarize and discuss the performance and applications of 3D printed CPCs based strain sensors in recent years. Finally, the current challenges and prospects of 3D printed strain sensors are also discussed to provide an insight into the future of strain sensors using 3D printing technology.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Toshiro Yamanaka ◽  
Fumihito Arai

AbstractFor future medical microrobotics, we have proposed the concept of the electroosmotic self-propulsive microswimmer powered by biofuel cell. According to the derived theoretical model, its self-propulsion velocity is inversely proportional to the length of the microswimmer, while it is proportional to the open circuit potential generated by the biofuel cell which does not depend on its size. Therefore, under conditions where those mechanisms work, it can be expected that the smaller its microswimmer size, the faster its self-propulsion velocity. Because of its remarkable feature, this concept is considered to be suitable as propulsion mechanisms for future medical microrobots to move inside the human body through the vascular system, including capillaries. We have already proved the mechanisms by observing the several 10 μm/s velocity of 100 μm prototypes fabricated by the optical photolithography using several photomasks and alignment steps. However, the standard photolithography was not suitable for further miniaturization of prototypes due to its insufficient resolution. In this research, we adopted femtosecond-laser 3D microlithography for multi-materials composing of the conductive polymer composites and nonconductive polymer composite and succeeded in fabricating 10 μm prototypes. Then we demonstrated more than 100 μm/s velocity of the prototype experimentally and proved its validity of the smaller and faster feature.


2000 ◽  
Vol 88 (3) ◽  
pp. 1480-1487 ◽  
Author(s):  
Guozhang Wu ◽  
Shigeo Asai ◽  
Cheng Zhang ◽  
Tadashi Miura ◽  
Masao Sumita

2005 ◽  
Vol 222 (1) ◽  
pp. 187-194 ◽  
Author(s):  
Jean Fran�ois Feller ◽  
Patrick Glouannec ◽  
Patrick Salagnac ◽  
Guillaume Droval ◽  
Philippe Chauvelon

Sign in / Sign up

Export Citation Format

Share Document