scholarly journals The Influence of Compounding Parameters on the Electrical Conductivity of LDPE/Cu Conductive Polymer Composites (CPCs)

2021 ◽  
Vol 2080 (1) ◽  
pp. 012008
Author(s):  
Farah Badrul ◽  
Khairul Anwar Abdul Halim ◽  
MohdArif Anuar Mohd Salleh ◽  
Azlin Fazlina Osman ◽  
Nor Asiah Muhamad ◽  
...  

Abstract Low-linear density (LDPE) and copper (Cu) were used as main polymer matrix and conductive filler in order to produce electrically conductive polymer composites (CPC). The selection of the matrix and conductive filler were based on their due to its excellence properties, resistance to corrosion, low cost and electrically conductive. This research works is aimed to establish the effect of compounding parameter on the electrical conductivity of LDPE/Cu composites utilising the design of experiments (DOE). The CPCs was compounded using an internal mixer where all formulations were designed by statistical software. The scanning electron micrograph (SEM) revealed that the Cu conductive filler had a flake-like shape, and the electrical conductivity was found to be increased with increasing filler loading as measured using the four-point probe technique. The conductivity data obtained were then analysed by using the statistical software to establish the relationship between the compounding parameters and electrical conductivity where it was found based that the compounding parameters have had an effect on the conductivity of the CPC.

2015 ◽  
Vol 1115 ◽  
pp. 253-257 ◽  
Author(s):  
Yose Fachmi Buys ◽  
Nor Afiza Syafina Lokman

In order to develop environmentally friendly conductive polymer composites, polylactic acid (PLA) was melt blended with natural rubber (NR), with addition of carbon black (CB) as the conductive filler. It was found that the PLA/NR blends were immiscible, and the sea-island and co-continuous morphological structures were observed at PLA/NR with ratio of 80/20 vol% and 60/40 vol% respectively. Addition of CB to 60/40 PLA/NR matrix, brought the composites to become electrically conductive at CB content of 2 phr. It was also found that the impact strength of PLA/NR/CB composite is better than that of the neat PLA.


2017 ◽  
Vol 51 (22) ◽  
pp. 3187-3195 ◽  
Author(s):  
Nabilah Afiqah Mohd Radzuan ◽  
Abu Bakar Sulong ◽  
Mahendra Rao Somalu

A milled carbon fibre and polypropylene polymer composite at high filler loading was developed to produce conductive polymer composites for high conductive applications. Current research of conductive polymer composite material has reported about in-plane conductivity that was often higher than through-plane conductivity, which contradicted with the target of applications that required higher electrical conductivity in the through-plane direction. Therefore, electrical conductivity in parallel and transverse to extrusion directions were investigated. The general-effective media and modified fibre contact model were adapted to predict the electrical conductivity of the composite material. The experimental conductivity data of polypropylene/milled carbon fibre composites for transverse and parallel directions were not correlated with the general-effective media model with 2.009 and 0.663 S/cm, respectively, at the highest filler loading of 80 wt.%. This disagreement was due to various critical exponential, t values (2–3.25) that were obtained in this study. However, the modified fibre contact model seemed to have good agreement with the experimental data in the parallel to extrusion direction. This model was unable to predict electrical conductivity in the transverse direction due to lack of orientation occurring in that direction. The electrical conductivity increased as the filler loading increased as explained in percolation theory. Predicting the electrical conductivity of conductive polymer composites material is still in the preliminary stages where the researcher often obtains fluctuating agreement with the experimental values. Thus, contact between filler and orientation is considered as the main factor that influences the electrical conductivity and mechanical strength of the conductive polymer composites material.


2000 ◽  
Vol 661 ◽  
Author(s):  
Jaime C. Grunlan ◽  
William W. Gerberich ◽  
Lorraine F. Francis

ABSTRACTIn an effort to determine the optimal balance of electrical and mechanical performance for electrically conductive polymer composites, three figures of merit were evaluated. All three figures of merit displayed peaks and/or discontinuities at a particular filler loading. These loadings appear to correspond to the critical pigment volume concentration for a given system. Composite systems based upon latex as the matrix starting material showed peaks in the figures of merit at very low carbon black concentrations (10 vol%), while composites prepared with polymer solutions or melts had peaks above 20 vol% carbon black. These differences in behavior are attributed to differences in microstructural evolution that occur with filler loading.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Xiaolong Gao ◽  
Yao Huang ◽  
Xiaoxiang He ◽  
Xiaojing Fan ◽  
Ying Liu ◽  
...  

Electrically conductive polymer composites are in high demand for modern technologies, however, the intrinsic brittleness of conducting conjugated polymers and the moderate electrical conductivity of engineering polymer/carbon composites have highly constrained their applications. In this work, super high electrical conductive polymer composites were produced by a novel hot embossing design. The polydimethylsiloxane (PDMS) composites containing short carbon fiber (SCF) exhibited an electrical percolation threshold at 0.45 wt % and reached a saturated electrical conductivity of 49 S/m at 8 wt % of SCF. When reducing the sample thickness from 1.0 to 0.1 mm by the hot embossing process, a compression-induced percolation threshold occurred at 0.3 wt %, while the electrical conductivity was further enhanced to 378 S/m at 8 wt % SCF. Furthermore, the addition of a second nanofiller of 1 wt %, such as carbon nanotube or conducting carbon black, further increased the electrical conductivity of the PDMS/SCF (8 wt %) composites to 909 S/m and 657 S/m, respectively. The synergy of the densified conducting filler network by the mechanical compression and the hierarchical micro-/nano-scale filler approach has realized super high electrically conductive, yet mechanically flexible, polymer composites for modern flexible electronics applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15070-15076 ◽  
Author(s):  
Linxiang He ◽  
Sie Chin Tjong

Nano silver-decorated reduced graphene oxide (Ag–RGO) sheets were synthesized by simply dissolving graphite oxide and silver nitrate inN,N-dimethylformamide and keeping the suspension at 90 °C for 12 h.


Author(s):  
Farah Badrul ◽  
Khairul Anwar Abdul Halim ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Firdaus Omar ◽  
Azlin Fazlina Osman ◽  
...  

2012 ◽  
Vol 729 ◽  
pp. 260-265
Author(s):  
M. Olah ◽  
Ferenc Ronkay

Investigation of conductive polymer composites have been carried out using polypropylene (PP) and polyphenylene sulfonate (PPS) for matrix compound and graphite, carbon black and multi walled carbon nanotubes (MWCNT) for fillers. The comparison of these matrix materials with respect to the resulting electrical conductivity were investigated in depth. The effect of quantity of nanotubes and their dispersion on electrical conductivity and formability was also investigated. It has been found that PPS composites show much higher conductivity, however the high temperature needed for forming, and high viscosity in case of high filler content (50 wt% <) make the processing difficult, therefore the injection molding of the resulting material is currently not possible. Furthermore in contradiction to the literature the addition of MWCNT did not raise the conductivity significantly, therefore the focus have been kept on filler content instead.


Sign in / Sign up

Export Citation Format

Share Document