A simplified non-linear modelling strategy to generate fragility curves for old masonry buildings

2021 ◽  
Vol 254 ◽  
pp. 106579
Author(s):  
Alessandro Stocchi ◽  
Cédric Giry ◽  
Sophie Capdevielle ◽  
Irmela Zentner ◽  
Emmanuelle Nayman ◽  
...  
2021 ◽  
Vol 11 (5) ◽  
pp. 2280
Author(s):  
Igor Tomić ◽  
Francesco Vanin ◽  
Katrin Beyer

Seismic assessments of historical masonry buildings are affected by several sources of epistemic uncertainty. These are mainly the material and the modelling parameters and the displacement capacity of the elements. Additional sources of uncertainty lie in the non-linear connections, such as wall-to-wall and floor-to-wall connections. Latin Hypercube Sampling was performed to create 400 sets of 11 material and modelling parameters. The proposed approach is applied to historical stone masonry buildings with timber floors, which are modelled by an equivalent frame approach using a newly developed macroelement accounting for both in-plane and out-of-plane failure. Each building is modelled first with out-of-plane behaviour enabled and non-linear connections, and then with out-of-plane behaviour disabled and rigid connections. For each model and set of parameters, incremental dynamic analyses are performed until building failure and seismic fragility curves derived. The key material and modelling parameters influencing the performance of the buildings are determined based on the peak ground acceleration at failure, type of failure and failure location. This study finds that the predicted PGA at failure and the failure mode and location is as sensitive to the properties of the non-linear connections as to the material and displacement capacity parameters, indicating that analyses must account for this uncertainty to accurately assess the in-plane and out-of-plane failure modes of historical masonry buildings. It also shows that modelling the out-of-plane behaviour produces a significant impact on the seismic fragility curves.


Author(s):  
A. Sandoli ◽  
G. P. Lignola ◽  
B. Calderoni ◽  
A. Prota

AbstractA hybrid seismic fragility model for territorial-scale seismic vulnerability assessment of masonry buildings is developed and presented in this paper. The method combines expert-judgment and mechanical approaches to derive typological fragility curves for Italian residential masonry building stock. The first classifies Italian masonry buildings in five different typological classes as function of age of construction, structural typology, and seismic behaviour and damaging of buildings observed following the most severe earthquakes occurred in Italy. The second, based on numerical analyses results conducted on building prototypes, provides all the parameters necessary for developing fragility functions. Peak-Ground Acceleration (PGA) at Ultimate Limit State attainable by each building’s class has been chosen as an Intensity Measure to represent fragility curves: three types of curve have been developed, each referred to mean, maximum and minimum value of PGAs defined for each building class. To represent the expected damage scenario for increasing earthquake intensities, a correlation between PGAs and Mercalli-Cancani-Sieber macroseismic intensity scale has been used and the corresponding fragility curves developed. Results show that the proposed building’s classes are representative of the Italian masonry building stock and that fragility curves are effective for predicting both seismic vulnerability and expected damage scenarios for seismic-prone areas. Finally, the fragility curves have been compared with empirical curves obtained through a macroseismic approach on Italian masonry buildings available in literature, underlining the differences between the methods.


2013 ◽  
Vol 35 (1-2) ◽  
pp. 255-278 ◽  
Author(s):  
Stefano Pagano ◽  
Riccardo Russo ◽  
Salvatore Strano ◽  
Mario Terzo

2018 ◽  
Vol 81 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Luciano Rodrigo Lanssanova ◽  
Sebastião do Amaral Machado ◽  
Alexandre Techy de Almeida Garrett ◽  
Izabel Passos Bonete ◽  
Allan Libanio Pelissari ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242336
Author(s):  
Peter R. Browne ◽  
Carl T. Woods ◽  
Alice J. Sweeting ◽  
Sam Robertson

Representative learning design proposes that a training task should represent informational constraints present within a competitive environment. To assess the level of representativeness of a training task, the frequency and interaction of constraints should be measured. This study compared constraint interactions and their frequencies in training (match simulations and small sided games) with competition environments in elite Australian football. The extent to which constraints influenced kick and handball effectiveness between competition matches, match simulations and small sided games was determined. The constraints of pressure and time in possession were assessed, alongside disposal effectiveness, through an association rule algorithm. These rules were then expanded to determine whether a disposal was influenced by the preceding disposal. Disposal type differed between training and competition environments, with match simulations yielding greater representativeness compared to small sided games. The subsequent disposal was generally more effective in small sided games compared to the match simulations and competition matches. These findings offer insight into the measurement of representative learning designs through the non-linear modelling of constraint interactions. The analytical techniques utilised may assist other practitioners with the design and monitoring of training tasks intended to facilitate skill transfer from preparation to competition.


Sign in / Sign up

Export Citation Format

Share Document